首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background information. Caspase‐dependent and ‐independent death mechanisms are involved in apoptosis in a variety of human carcinoma cells treated with antineoplastic compounds. Our laboratory has reported that p53 is a key contributor of mitochondrial apoptosis in cervical carcinoma cells after staurosporine exposure. However, higher mitochondrial membrane potential dissipation and greater DNA fragmentation were observed in p53wt (wild‐type p53) HeLa cells compared with p53mt (mutated p53) C‐33A cells. Here, we have studied events linked to the mitochondrial apoptotic pathway. Results. Staurosporine can induce death of HeLa cells via a cytochrome c/caspase‐9/caspase‐3 mitochondrial‐dependent apoptotic pathway and via a delayed caspase‐independent pathway. In contrast with p53wt cells, p53mt C‐33A cells exhibit firstly caspase‐8 activation leading to caspase‐3 activation and Bid cleavage followed by cytochrome c release. Attenuation of PARP‐1 [poly(ADP‐ribose) polymerase‐1] cleavage as well as oligonucleosomal DNA fragmentation in the presence of z‐VAD‐fmk points toward a major involvement of a caspase‐dependent pathway in staurosporine‐induced apoptosis in p53wt HeLa cells, which is not the case in p53mt C‐33A cells. Meanwhile, the use of 3‐aminobenzamide, a PARP‐1 inhibitor known to prevent AIF (apoptosis‐inducing factor) release, significantly decreases staurosporine‐induced death in these p53mt carcinoma cells, suggesting a preferential implication of caspase‐independent apoptosis. On the other hand, we show that p53, whose activity is modulated by pifithrin‐α, isolated as a suppressor of p53‐mediated transactivation, or by PRIMA‐1 (p53 reactivation and induction of massive apoptosis), that reactivates mutant p53, causes cytochrome c release as well as mitochondrio—nuclear AIF translocation in staurosporine‐induced apoptosis of cervical carcinoma cells. Conclusions. The present paper highlights that staurosporine engages the intrinsic mitochondrial apoptotic pathway via caspase‐8 or caspase‐9 signalling cascades and via caspase‐independent cell death, as well as through p53 activity.  相似文献   

2.
3.
As the potential risk of radiation exposure is increasing, radioprotectors studies are gaining importance. In this study, novel hybrid compounds containing edaravone analogue and 3-n-butylphthalide ring-opening derivatives were synthesized, and their radioprotective effects were evaluated. Among these, compound 10a displayed the highest radioprotective activity in IEC-6 and HFL-1 cells. Its oral administration increased the survival rates of irradiated mice and alleviated total body irradiation (TBI)-induced hematopoietic damage by mitigating myelosuppression and improving hematopoietic stem/progenitor cell frequencies. Furthermore, 10a treatment prevented abdominal irradiation (ABI)-induced structural damage to the small intestine. Experiment results demonstrated that 10a increased the number of Lgr5+ intestinal stem cells, lysozyme+ Paneth cells and Ki67+ transient amplifying cells, and reduced apoptosis of the intestinal epithelium cells in irradiated mice. Moreover, in vitro and in vivo studies demonstrated that the radioprotective activity of 10a is associated to the reduction of oxidative stress and the inhibition of DNA damage. Furthermore, compound 10a downregulated the expressions of p53, Bax, caspase-9 and caspase-3, and upregulated the expression of Bcl-2, suggesting that it could prevent irradiation-induced intestinal damage through the p53-dependent apoptotic pathway. Collectively, these findings demonstrate that 10a is beneficial for the prevention of radiation damage and has the potential to be a radioprotector.  相似文献   

4.
Much effort was expended to develop anti-cancer drugs that restore the function of the p53 tumor suppressor protein. However, the p53 activity might be harmful to the organism by amplifying side effects of chemotherapy. Therefore, under certain conditions, inhibition of p53 can serve to prevent inappropriately triggered apoptosis in normal tissues. We have identified a short 22-mer peptide derived from the p53 core domain (peptide 14), which can inhibit p53 specific DNA binding. Upon introduction in living cells, peptide 14 inhibited the ability of p53 to transactivate a reporter gene. Moreover, peptide 14 blocked p53-induced apoptosis in two different cell lines. Peptide 14-mediated inhibition of p53 activity appears to operate via the binding of peptide to the core and/or C-terminal domains of the p53 protein. Our findings provide a basis for the development of a novel approach aimed at the inhibition of p53. This could be essential for the protection from cell death in tissues thus suppressing for example neurodegenerative process or side effects of radio- or chemotherapy.  相似文献   

5.
Much effort was expended to develop anti-cancer drugs that restore the function of the p53 tumor suppressor protein. However, the p53 activity might be harmful to the organism by amplifying side effects of chemotherapy. Therefore, under certain conditions, inhibition of p53 can serve to prevent inappropriately triggered apoptosis in normal tissues. We have identified a short 22-mer peptide derived from the p53 core domain (peptide 14), which can inhibit p53 specific DNA binding. Upon introduction in living cells, peptide 14 inhibited the ability of p53 to transactivate a reporter gene. Moreover, peptide 14 blocked p53-induced apoptosis in two different cell lines. Peptide 14-mediated inhibition of p53 activity appears to operate via the binding of peptide to the core and/or C-terminal domains of the p53 protein. Our findings provide a basis for the development of a novel approach aimed at the inhibition of p53. This could be essential for the protection from cell death in tissues thus suppressing for example neurodegenerative process or side effects of radio- or chemotherapy.  相似文献   

6.
The p53 tumor suppressor protein is a critical regulator of cell cycle progression and apoptosis following exposure of cells to DNA damaging agents such as ionizing radiation or anticancer drugs. An important group of anticancer drugs, including compounds such as etoposide and doxorubicin (Adriamycin), interacts with DNA topoisomerase II (topo II), causing the accumulation of enzyme-DNA adducts that ultimately lead to double-strand breaks and cell death via apoptosis. Human topo IIbeta has previously been shown to interact with p53, and we have extended this analysis to show that both topo IIalpha and IIbeta interact with p53 in vivo and in vitro. Furthermore, we show that the regulatory C-terminal basic region of p53 (residues 364-393) is necessary and sufficient for interaction with DNA topo II.  相似文献   

7.
Ionizing radiation increases cell mortality in a dose-dependent manner. Increases in DNA double strand breaks, γ-H2AX, p53 phophorylation, and protein levels of p53 and Bax also occur. We investigated the ability of ciprofloxacin (CIP), a widely prescribed antibiotic, to inhibit DNA damage induced by ionizing radiation. Human tumor TK6, NH32 (p53 ?/? of TK6) cells, and human normal peripheral blood mononuclear cells (PBMCs) were exposed to 2–8 Gy 60Co-γ-photon radiation. γ-H2AX (an indicator of DNA strand breaks), phosphorylated p53 (responsible for cell-cycle arrest), Bcl-2 (an apoptotic protein, and cell death were measured. Ionizing irradiation increased γ-H2AX amounts in TK6 cells (p53+/+) within 1 h in a radiation dose-dependent manner. CIP pretreatment and posttreatment effectively inhibited the increase in γ-H2AX. CIP pretreatment reduced Bcl-2 production but promoted p53 phosphorylation, caspase-3 activation and cell death. In NH32 cells, CIP failed to significantly inhibit the radiation-induced γ-H2AX increase, suggesting that CIP inhibition involves in p53-dependent mechanisms. In normal healthy human PBMCs, CIP failed to block the radiation-induced γ-H2AX increase but effectively increased Bcl-2 production, but blocked the phospho-p53 increase and subsequent cell death. CIP increased Gadd45α, and enhanced p21 protein 24 h postirradiation. Results suggest that CIP exerts its effect in TK6 cells by promoting p53 phosphorylation and inhibiting Bcl-2 production and in PBMCs by inhibiting p53 phosphorylation and increasing Bcl-2 production. Our data are the first to support the view that CIP may be effective to protect normal tissue cells from radiation injury, while enhancing cancer cell death in radiation therapy.  相似文献   

8.
Ionizing radiation (IR) leads to oxidizing events such as excessive reactive oxygen species (ROS) in the exposed cells, resulting in further oxidative damage to lipids, proteins and DNA. To screen the potential radio-protective drug, the intracellular ROS was measured in irradiated U937 cells pretreated with 80 candidate traditional herbal medicine, respectively. Isofraxidin (IF) was one possible radio-protector in these 80 drugs. This study investigated the radio-protective role of IF, a Coumarin compound, in human leukemia cell lines, for the first time. Results indicate that IF protects against IR-induced apoptosis in U937 cells in the time- and concentration- dependent manner. IF decreases IR-induced intracellular ROS generation, especially hydroxyl radicals formation, inhibits IR-induced mitochondrial membrane potential loss and reduces IR-induced high intracellular Ca2+ levels regardless of ER stress. IF down-regulates the expression of caspase-3, phospho-JNK, phospho-p38 and activates Bax in mitochondria. IF inhibits cytochrome c release from mitochondria to cytosol. IF also moderates IR-induced Fas externalization and caspase-8 activation. IF also exhibits significant protection against IR-induced cell death in other leukemia cell lines such as Molt-4 cells and HL60 cells regardless of p53. Taken together, the data demonstrate that IF protects leukemia cells from radiation-induced apoptosis via ROS/mitochondria pathway in a p53-independent manner.  相似文献   

9.
Securin has been shown to regulate genomic stability; nevertheless, the role of securin on the cytotoxicity after radiation is still unclear. Exposure to 1–10 Gy X-ray radiation induced cell death in RKO colorectal cancer cells. The protein levels of securin, p53, and p21 were elevated by radiation. The proteins of phosphorylation of p53 at serine-15, which located on the nuclei of cancer cells, were highly induced by radiation. However, radiation increased securin proteins, which located on both of nuclei and cytoplasma in RKO cells. The p53-wild type colorectal cancer cells were more susceptible on cytotoxicity than the p53-mutant cells following exposure to radiation. Besides, the existence of securin in colorectal cancer cells induced higher apoptosis than the securin-null after radiation. Securin proteins were elevated by radiation in the p53-wild type and -mutant cells; furthermore, radiation raised the p53 protein expression in both the securin-wild type and -null cells. As a whole, these findings suggest that the existence of securin promotes apoptosis via a p53-indpendent pathway after radiation in human colorectal cancer cells.  相似文献   

10.
Non-ionizing radiation produced by nanosecond pulsed electric fields (nsPEFs) is an alternative to ionizing radiation for cancer treatment. NsPEFs are high power, low energy (non-thermal) pulses that, unlike plasma membrane electroporation, modulate intracellular structures and functions. To determine functions for p53 in nsPEF-induced apoptosis, HCT116p53+/+ and HCT116p53−/− colon carcinoma cells were exposed to multiple pulses of 60 kV/cm with either 60 ns or 300 ns durations and analyzed for apoptotic markers. Several apoptosis markers were observed including cell shrinkage and increased percentages of cells positive for cytochrome c, active caspases, fragmented DNA, and Bax, but not Bcl-2. Unlike nsPEF-induced apoptosis in Jurkat cells (Beebe et al. 2003a) active caspases were observed before increases in cytochrome c, which occurred in the presence and absence of Bax. Cell shrinkage occurred only in cells with increased levels of Bax or cytochrome c. NsPEFs induced apoptosis equally in HCT116p53+/+ and HCT116p53−/− cells. These results demonstrate that non-ionizing radiation produced by nsPEFs can act as a non-ligand agonist with therapeutic potential to induce apoptosis utilizing mitochondrial-independent mechanisms in HCT116 cells that lead to caspase activation and cell death in the presence or absence of p-53 and Bax. This work was supported by the U.S. Air Force Office of Scientific Research/DOD MURI grant on Subcellular Responses to Narrow Band and Wide Band Radio Frequency Radiation, administered by Old Dominion University, and the American Cancer Society.  相似文献   

11.
12.
13.
FUS1/TUSC2 is a mitochondrial tumor suppressor with activity to regulate cellular oxidative stress by maintaining balanced ROS production and mitochondrial homeostasis. Fus1 expression is inhibited by ROS, suggesting that individuals with a high level of ROS may have lower Fus1 in normal tissues and, thus, may be more prone to oxidative stress-induced side effects of cancer treatment, including radiotherapy. As the role of Fus1 in the modulation of cellular radiosensitivity is unknown, we set out to determine molecular mechanisms of Fus1 involvement in the IR response in normal tissues. Mouse whole-body irradiation methodology was employed to determine the role for Fus1 in the radiation response and explore underlying molecular mechanisms. Fus1−/− mice were more susceptible to radiation compared with Fus1+/+ mice, exhibiting increased mortality and accelerated apoptosis of the GI crypt epithelial cells. Following untimely reentrance into the cell cycle, the Fus1−/− GI crypt cells died at accelerated rate via mitotic catastrophe that resulted in diminished and/or delayed crypt regeneration after irradiation. At the molecular level, dysregulated dynamics of activation of main IR response proteins (p53, NFκB, and GSK-3β), as well as key signaling pathways involved in oxidative stress response (SOD2, PRDX1, and cytochrome c), apoptosis (BAX and PARP1), cell cycle (Cyclins B1 and D1), and DNA repair (γH2AX) were found in Fus1−/− cells after irradiation. Increased radiosensitivity of other tissues, such as immune cells and hair follicles was also detected in Fus1−/− mice. Our findings demonstrate a previously unknown radioprotective function of the mitochondrial tumor suppressor Fus1 in normal tissues and suggest new individualized therapeutic approaches based on Fus1 expression.  相似文献   

14.
p53-dependent apoptosis contributes to the side effects of cancer treatment, and genetic or pharmacological inhibition of p53 function can increase normal tissue resistance to genotoxic stress. It has recently been shown that p53 can induce apoptosis through a mechanism that does not depend on transactivation but instead involves translocation of p53 to mitochondria. To determine the impact of this p53 activity on normal tissue radiosensitivity, we isolated a small molecule named pifithrin-mu (PFTmu, 1) that inhibits p53 binding to mitochondria by reducing its affinity to antiapoptotic proteins Bcl-xL and Bcl-2 but has no effect on p53-dependent transactivation. PFTmu has a high specificity for p53 and does not protect cells from apoptosis induced by overexpression of proapoptotic protein Bax or by treatment with dexamethasone (2). PFTmu rescues primary mouse thymocytes from p53-mediated apoptosis caused by radiation and protects mice from doses of radiation that cause lethal hematopoietic syndrome. These results indicate that selective inhibition of the mitochondrial branch of the p53 pathway is sufficient for radioprotection in vivo.  相似文献   

15.
The Bowman-Birk proteinase inhibitor (BBI) has previously been described as a radioprotective agent against ionising radiation. It was demonstrated that BBI is able to significantly increase the clonogenic cell survival of normal fibroblasts when applied before exposure to ultraviolet B (UVB) radiation. In transformed TP53-mutated cell lines, however, the BBI-mediated radioprotection was absent. At the molecular level, the radioprotective effect of BBI can be correlated with BBI-mediated stabilisation of TP53 protein prior to irradiation. Following UVB irradiation, the BBI-treated cells present an accelerated removal of cyclobutane pyrimidine dimers. Thus, the cell and molecular biological data presented suggest that BBI is able to protect cells with functional TP53 from UVB-induced DNA damage. This protective effect is most likely achieved via the activation of the TP53 signalling cascade resulting in the activation of nucleotide excision repair. Received: 7 August 2000 / Accepted: 11 January 2001  相似文献   

16.
Treatment with the Bcl-2/Bcl-XL inhibitor ABT-737 is a promising novel strategy to therapeutically induce apoptotic cell death in malignant tumors such as glioblastomas. Although many studies have demonstrated that ABT-737 acts synergistically with chemotherapeutic drugs, the possibility of a combined treatment with ionizing radiation (IR) and ABT-737 has not yet been thoroughly investigated. Similarly, the relationship between p53 function and the pro-apoptotic effects of ABT-737 are still obscure. Here, we demonstrate that IR and ABT-737 synergistically induce apoptosis in glioblastoma cells. The sensitivity to ABT-737-mediated cell death is significantly increased by the IR-dependent accumulation of cells in the G2/M cell cycle phase. Wild type p53 function inhibits the efficacy of a combined IR and ABT-737 treatment via a p21-dependent G1 cell cycle arrest. Moreover, mutant as well as wild type p53 counteract the pro-apoptotic activity of ABT-737 by maintaining the expression levels of the Mcl-1 protein. Thus, p53 regulates the sensitivity to ABT-737 of glioblastoma cells. Our results warrant a further evaluation of a novel combination therapy using IR and ABT-737. The efficacy of such a therapy could be substantially enhanced by Mcl-1-lowering strategies.  相似文献   

17.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

18.
Despite intense studies, highly effective therapeutic strategies against cancer have not yet been fully exploited, because few true cancer-specific targets have been identified. Most modalities, perhaps with the exception of radiation therapy, target proliferating cells, which are also abundant in normal tissues. Thus, most current cancer treatments have significant side effects. More than 10 years ago, the tumor suppressor p53 was first explored as a cancer-specific target. At the time, the approach was to introduce a normal p53 gene into mutant p53 (mp53) tumor cells to induce cell cycle arrest and apoptosis. However, this strategy did not hold up and mostly failed in subsequent clinical studies. Recent research developments have now returned p53 to the limelight. Several studies have reported that mutant or null p53 tumor cells undergo apoptosis more easily than genetically matched, normal p53 counterparts when inhibiting a specific stress kinase in combination with standard chemotherapy or when exposed to an ataxia-telangiectasia mutated (ATM) kinase inhibitor and radiation, thus achieving true cancer specificity in animal tumor models. This short review highlights several of these recent studies, discusses possible mechanism(s) for mp53-mediated “synthetic lethality,” and the implications for cancer therapy.  相似文献   

19.
The tumour suppressor gene p53 and the intracellular signalling molecule ceramide have both been shown to play crucial roles in the induction of apoptosis by ionising radiation. In this study we examined whether p53 and ceramide are involved in independent signal pathways, inducing different types of apoptosis. TK6 (p53wt/wt) and WTK1 (p53mut/mut) lymphoblastoid cells were treated with ionising radiation or N-acetyl-d-sphingosine (C2-ceramide). Flow cytometry and fluorescence microscopy studies were performed to characterise the time kinetics and morphological features of induced apoptosis. Ceramide- and radiation-induced apoptotic cells display characteristic differences in morphology and DNA staining and ceramide-induced apoptosis is expressed much faster than radiation-induced apoptosis. Radiation-induced apoptosis is p53-dependent and ceramide-induced apoptosis is p53-independent. The p53 pathway and the ceramide pathway are two independent signal pathways leading to distinct types of apoptosis. Since p53 is very often dysfunctional in tumour cells, modifying the ceramide pathway is a promising strategy to increase tumour sensitivity to radiation and other anticancer agents. Received: 19 April 2001 / Accepted: 15 October 2001  相似文献   

20.
Prykhozhij SV 《PloS one》2010,5(10):e13549

Background

Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.

Methodology/Principal Findings

Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.

Conclusions

Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号