首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In an effort to identify novel anti-inflammatory compounds, a series of flavone derivatives were synthesized and biologically evaluated for their inhibitory effects on the production of nitric oxide (NO) and prostaglandin E2 (PGE2), representative pro-inflammatory mediators, in LPS-induced RAW 264.7 cells. Their structure-activity relationship was also investigated. In particular, we found that compound 3g displayed more potent inhibitory activities on PGE2 production, similar inhibitory activities on NO production and less weak cytotoxicity than luteolin, a natural flavone known as a potent anti-inflammatory agent.  相似文献   

2.
A novel series of diphenolic chromone derivatives were synthesized and their inhibitory activity on nitric oxide (NO) production and cytotoxicity were evaluated using LPS-activated murine macrophages RAW264.7 assay and MTT method, respectively. Among these compounds, (5,7-dihydroxy-4-oxo-4H-chromen-3-yl) methyl esters (6b, 6c, 6f, 6g, and 6h) showed quite potent inhibitory activities with IC50 values of 2.20, 3.48, 0.35, 0.80, and 0.61 μM, respectively. The MTT results showed that all of the active compounds exhibited no cytotoxicity at the effective concentrations. The preliminary mechanism of the most potent compounds (6b, 6c, 6f, 6g, and 6h) was further examined based on the RT-PCR results and the compounds 6f, 6g, and 6h inhibited NO production by suppressing the expression of iNOS mRNA in a dose dependent manner. Furthermore, a computational analysis of physicochemical parameters revealed that the most of the compounds possessed drug-like properties.  相似文献   

3.
A number of 1,5-diarylimidazole analogs were synthesized and evaluated their inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin E2 production. Reactions of 1,5-diarylimidazoles with halogenating reagents (NCS, NBS, NIS) afforded halogenated analogs. Among the analogs tested, compounds Ib, IIa, IIb and IIe exhibited significantly improved inhibitory activities against COX-2-mediated PGE2 production from LPS-induced RAW 264.7 cells compared to those of the parent 1,5-diarylimidazoles. Especially, the analogs Ib (IC50 = 0.55 μM) and IIa (IC50 = 0.58 μM) showed best results. Halogenation on the 1,5-diarylimidazole ring enhanced inhibitory activities against COX-2 catalyzed PGE2 production, however, inhibitory activities were significantly varied by position(s) and species of the substituted halogen(s).  相似文献   

4.
A new pyrrolidinone diterpenoid, excisusin F (1), was isolated from the aerial parts of Isodon excisus (Lamiaceae), together with four known compounds, and their structures were determined mainly by NMR (1D and 2D) and mass spectrometry. Excisusin F (1) and inflexarabdonin E (3) showed potent inhibitory effects of LPS-induced nitric oxide production in RAW264.7 cells with the IC50 value of 10.4 and 3.8 μM, respectively.  相似文献   

5.
Arvelexin is one of major constituents of Brassica rapa that exerts anti-inflammatory activities. Several indolyl-3-acetonitrile derivatives were synthesized as arvelexin analogs and evaluated for their abilities to inhibit NO and PGE2 productions in LPS-induced RAW 264.7 cells. Of the indolyl-3-acetonitriles synthesized, compound 2k, which possesses a hydroxyl group at C-7 position of the indole ring and an N-methyl substituent, more potently inhibited NO and PGE2 productions and was less cytotoxic than arvelexin on macrophage cells.  相似文献   

6.
The 80% methanolic extract of Euonymus alatus leaves and twigs afforded three new lignans, (−)-threo-4,9,4′,9′-tetrahydroxy-3,7,3′,5′-tetramethoxy-8-O-8′-neolignan (1), (−)-threo-4,9,4′,9′-tetrahydroxy-3,5,7,3′-tetramethoxy-8-O-8′-neolignan (2), (7R,8R,7′R)-(+)-lyoniresinol (3), together with seventeen known lignans (4-20). The structures of 1-20 were elucidated by extensive 1D and 2D spectroscopic methods including 1H NMR, 13C NMR, 1H-1H COSY, HMQC, HMBC and NOESY. All the isolated compounds except for dilignans (19 and 20) significantly inhibited nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells.  相似文献   

7.
Bioactivity-guided isolation of the methanol extract of the stems of Dendrobium nobile yielded a new phenanthrene together with nine known phenanthrenes and three known bibenzyls. Their structures were elucidated by analysis of the spectroscopic data including 2D-NMR. All of the isolates were evaluated for their potential to inhibit the LPS-induced production of nitric oxide in murine macrophage RAW 264.7 cells. Compounds 14, 713 inhibited nitric oxide production with the IC50 values ranging from 9.6 μM to 35.7 μM.  相似文献   

8.
This Letter presents the synthesis and biological evaluation of a collection of 2-aminothiazoles as a novel class of compounds with the capability to reduce the production of PGE(2) in HCA-7 human adenocarcinoma cells. A total of 36 analogs were synthesized and assayed for PGE(2) reduction, and those with potent cellular activity were counter screened for inhibitory activity against COX-2 in a cell free assay. In general, analogs bearing a 4-phenoxyphenyl substituent in the R(2) position were highly active in cells while maintaining negligible COX-2 inhibition. Specifically, compound 5l (R(1)=Me, R(2)=4-OPh-Ph, R(3)=CH(OH)Me) exhibited the most potent cellular PGE(2) reducing activity of the entire series (EC(50)=90 nM) with an IC(50) value for COX-2 inhibition of >5 μM in vitro. Furthermore, the anti-tumor activity of analog 1a was analyzed in xenograft mouse models exhibiting promising anti-cancer activity.  相似文献   

9.
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.  相似文献   

10.
Sulfuretin is one of major constituents of Rhus verniciflua that exerts anti-inflammatory activities. Some of aurones were synthesized as sulfuretin derivatives and evaluated for their abilities to inhibit NO and PGE2 production in LPS-induced RAW 264.7 cells in order to reveal the relationship. Of the aurones synthesized in the present study, 2h and 2i, which possess C-6 hydroxyl group in A-ring and methoxy substituents in B-ring, more potently inhibited NO and PGE2 production and were less cytotoxic than sulfuretin.  相似文献   

11.
Acetyl, oleoyl, arachidonoyl, and docosahexaenoyl derivatives of the Pro-Gly-Pro-Leu peptide with a chemical purity of 99.8% were synthesized. The degradation kinetics of the Pro-Gly-Pro-Leu derivatives under the action of leucine aminopeptidase, nasal mucus, and microsomal fraction of the brain and blood of rats was studied. It was shown that the N-acyl derivatives of Pro-Gly-Pro-Leu proved to be more resistant to the action of leucine aminopeptidase and other enzyme systems. The study of the cytotoxic and anti-inflammatory activity of preparations on the mouse macrophage cell line RAW264.7 showed that acylation with oleic and arachidonic acid makes the peptide cytotoxic with LC50 in the range of 70–15 μM and gives it anti-inflammatory properties with EC50 of 32 and 36 μM, respectively.  相似文献   

12.
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3aj) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5?h of carrageenan injection at the 30?mg?kg?1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.  相似文献   

13.
A new dihydropyranocoumarin, (+)-cis-(3′S,4′S)-diisobutyrylkhellactone (1), together with five known compounds, 3′-senecioyl-4′-acetylkhellactone (2), 3′-isovaleryl-4′-acetylkhellactone (3), 3′,4′-disenecioylkhellactone (4), 3′-isovaleryl-4′-senecioylkhellactone (5), and 3′,4′-diisovalerylkhellactone (6), was isolated from Glehnia littoralis. Their chemical structures were elucidated based on the spectroscopic data interpretation, particularly 1D and 2D NMR data including HMQC and HMBC. All the isolated compounds showed the potential to inhibit LPS-induced nitric oxide production in RAW 264.7 cells with IC50 values ranging from 7.4 to 44.3 μM.  相似文献   

14.
15.
16.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

17.
This Letter reports the synthesis and biological evaluation of a collection of aminophthalazines as a novel class of compounds capable of reducing production of PGE2 in HCA-7 human adenocarcinoma cells. A total of 28 analogs were synthesized, assayed for PGE2 reduction, and selected active compounds were evaluated for inhibitory activity against COX-2 in a cell free assay. Compound 2xxiv (R1 = H, R2 = p-CH3O) exhibited the most potent activity in cells (EC50 = 0.02 μM) and minimal inhibition of COX-2 activity (3% at 5 μM). Furthermore, the anti-tumor activity of analog 2vii was analyzed in xenograft mouse models exhibiting good anti-cancer activity.  相似文献   

18.
In this article, a series of 22 triarylpyrazole derivatives were evaluated for in vitro antiinflammatory activity as inhibitors of nitric oxide (NO) and prostaglandin E2 (PGE2) release induced by lipopolysaccharide (LPS) in murine RAW 264.7 macrophages. The synthesized compounds 1a-h, 2a-f and 3a-h were first examined for their cytotoxicity for determination of the non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production were not caused by non-specific cytotoxicity. Compounds 1h and 2f were the most active PGE2 inhibitors with IC50 values of 2.94 μM and 4.21 μM, respectively. Western blotting and cell-free COX-2 screening revealed that their effects were due to inhibition of COX-2 protein expression. Moreover, compound 1h exerted strong inhibitory effect on the expression of COX-2 mRNA in LPS-induced murine RAW 264.7 macrophages.  相似文献   

19.
20.
Prostaglandins (PGs), the arachidonic acid (AA) metabolites of the cyclooxygenase (COX) pathway, and the cytokine TNFalpha play major roles in inflammation and they are synthesised mainly by macrophages. Their syntheses have been shown to be regulated by several factors, including nitric oxide, a further important macrophage product. Since both positive and negative regulations of PGs and TNFalpha synthesis by NO have been reported, we sought to understand the mechanisms underlying these opposite NO effects by using a recent class of NO releasing compounds, the NONOates, which have been shown to release NO in a controlled fashion. To this aim, we analysed the effect of NO released from PAPA/NO (t1/2 15 min) and DETA/NO (t1/2 20 h) in RAW 264.7 cells. Both NONOates were used at the same concentrations allowing the cell cultures to be exposed either at high levels of NO for brief time (PAPA/NO) or at low levels of NO for long time (DETA/NO). We found that the two NONOates had opposite effect on basal TNFalpha release, being increased by PAPA/NO and decreased by DETA/NO, while they did not affect the release stimulated by LPS. At variance, both NONOates increased the basal PGE(2) production, while the LPS-stimulated production was slightly increased only by PAPA/NO. The modulation of PGE(2) synthesis was the result of the distinct effects of the two NO-donors on either arachidonic acid (AA) release or cyclooxygense-2 (COX-2) expression, the precursor and synthetic enzyme of PGs, respectively. Indeed, in resting cultures AA release was enhanced only by PAPA/NO whereas COX-2 expression was moderately upregulated by both donors. In LPS activated cells, both NONOates induced AA release, although with different kinetics and potencies, but only DETA/NO significantly increased COX-2 expression. In conclusion, by comparing the activities of these two NONOates, our observations indicate that level and time of exposure to NO are both crucial in determining the molecular target and the final result of the interactions between NO and inflammatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号