首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future. In this study, we used 4,056 leaf‐out date observations during the period 1969–2017 for clones of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) planted in 63 sites covering a large latitudinal gradient (from Portugal ~41°N to Norway ~63°N) at the International Phenological Gardens in order to (a) evaluate how the sensitivity periods to forcing and chilling have changed with climate warming, and (b) test whether consistent patterns occur along biogeographical gradients, that is, from colder to warmer environments. Partial least squares regressions suggest that the length of the forcing period has been extended over the recent decades with climate warming in the colder latitudes but has been shortened in the warmer latitudes for both species, with a more pronounced shift for beech. We attribute the lengthening of the forcing period in the colder latitudes to earlier opportunities with temperatures that can promote bud development. In contrast, at warmer or oceanic climates, the beginning of the forcing period has been delayed, possibly due to insufficient chilling. However, in spite of a later beginning of the forcing period, spring phenology has continued to advance at these areas due to a faster satisfaction of heat requirements induced by climate warming. Overall, our results support that ongoing climate warming will have different effects on the spring phenology of forest trees across latitudes due to the interactions between chilling, forcing and photoperiod.  相似文献   

2.
Previous studies have documented advancement in clutch initiation dates (CIDs) in response to climate change, most notably for temperate-breeding passerines. Despite accelerated climate change in the Arctic, few studies have examined nest phenology shifts in arctic breeding species. We investigated whether CIDs have advanced for the most abundant breeding shorebird and passerine species at a long-term monitoring site in arctic Alaska. We pooled data from three additional nearby sites to determine the explanatory power of snow melt and ecological variables (predator abundance, green-up) on changes in breeding phenology. As predicted, all species (semipalmated sandpiper, Calidris pusilla, pectoral sandpiper, Calidris melanotos, red-necked phalarope, Phalaropus lobatus, red phalarope, Phalaropus fulicarius, Lapland longspur, Calcarius lapponicus) exhibited advanced CIDs ranging from 0.40 to 0.80 days/year over 9 years. Timing of snow melt was the most important variable in explaining clutch initiation advancement (“climate/snow hypothesis”) for four of the five species, while green-up was a much less important explanatory factor. We found no evidence that high predator abundances led to earlier laying dates (“predator/re-nest hypothesis”). Our results support previous arctic studies in that climate change in the cryosphere will have a strong impact on nesting phenology although factors explaining changes in nest phenology are not necessarily uniform across the entire Arctic. Our results suggest some arctic-breeding shorebird and passerine species are altering their breeding phenology to initiate nesting earlier enabling them to, at least temporarily, avoid the negative consequences of a trophic mismatch.  相似文献   

3.
Worldwide, many plant species are experiencing an earlier onset of spring phenophases due to climate warming. Rapid recent temperature increases on the Tibetan Plateau (TP) have triggered changes in the spring phenology of the local vegetation. However, remote sensing studies of the land surface phenology have reached conflicting interpretations about green-up patterns observed on the TP since the mid-1990s. We investigated this issue using field phenological observations from 1990 to 2006, for 11 dominant plants on the TP at the levels of species, families (Gramineae—grasses and Cyperaceae—sedges) and vegetation communities (alpine meadow and alpine steppe). We found a significant trend of earlier leaf-out dates for one species (Koeleria cristata). The leaf-out dates of both Gramineae and Cyperaceae had advanced (the latter significantly, starting an average of 9 days later per year than the former), but the correlation between them was significant. The leaf-out dates of both vegetation communities also advanced, but the pattern was only significant in the alpine meadow. This study provides the first field evidence of advancement in spring leaf phenology on the TP and suggests that the phenology of the alpine steppe can differ from that of the alpine meadow. These findings will be useful for understanding ecosystem responses to climate change and for grassland management on the TP.  相似文献   

4.
A strain of Synechococcus sp. PCC7942 lacking functional Fe superoxide dismutase (SOD), designated sodB, was characterized by its growth rate, photosynthetic pigments, inhibition of photosynthetic electron transport activity, and total SOD activity at 0°C, 10°C, 17°C, and 27°C in moderate light. At 27°C, the sodB and wild-type strains had similar growth rates, chlorophyll and carotenoid contents, and cyclic photosynthetic electron transport activity. The sodB strain was more sensitive to chilling stress at 17°C than the wild type, indicating a role for FeSOD in protection against photooxidative damage during moderate chilling in light. However, both the wild-type and sodB strains exhibited similar chilling damage at 0°C and 10°C, indicating that the FeSOD does not provide protection against severe chilling stress in light. Total SOD activity was lower in the sodB strain than in the wild type at 17°C and 27°C. Total SOD activity decreased with decreasing temperature in both strains but more so in the wild type. Total SOD activity was equal in the two strains when assayed at 0°C.  相似文献   

5.
植物物候特征对环境条件的季节和年际变化具有较强的指示作用, 因此研究植物物候特征对环境条件变化的响应, 对理解植物和环境之间的相互作用关系、植物的适应机制和生存策略, 以及应对全球变化都具有重要的意义。该研究基于2009-2011年高寒矮生嵩草(Kobresia humilis)草甸养分水分控制实验的植物物候观测数据资料, 采用巢式方差分析、物候指数和聚类分析方法, 开展了高寒矮生嵩草草甸主要植物物候特征对养分和水分添加的响应研究。结果表明: (1)养分添加处理之间植物返青期和枯黄期均无显著差异, 但养分添加中氮磷处理对主要物种作用较明显, 使莎草科、禾本科、杂类草主要代表植物的返青期和枯黄期推迟。(2)增雪处理效应明显, 主要优势物种无论是何种养分添加, 在增雪处理后均表现出花期物候提前的趋势(p < 0.01), 同时增雪处理使杂类草植物返青期显著提前(p < 0.05)。增水处理对植物的作用效果并不一致, 其中垂穗披碱草(Elymus nutans)和双柱头藨草(Scirpus distigmaticus)的枯黄期显著推迟(p < 0.05), 而杂类草枯黄期提前。(3)养分添加后, 不同物种的物候特征表现出显著差异(p < 0.01), 例如雪白委陵菜(Potentilla nivea)枯黄期显著推迟(p < 0.05), 而双柱头藨草的枯黄期显著提前(p < 0.05), 但物种对养分添加响应的差异以植物类群为单位, 禾本科植物表现为返青期推迟, 而莎草科植物表现为返青期提前。(4)矮生嵩草草甸主要植物营养生长期与果后营养期持续天数之间呈负相关关系, 主要植物物候特征经聚类分析可以分为3个类群, 3个类群经氮磷钾、钾和氮钾三个养分添加处理后植物物候特征变化较大。研究表明, 高寒矮生嵩草草甸植物物候特征在物种水平响应和水分添加后的响应表现出较大差异, 而对养分添加的响应不显著。  相似文献   

6.
The phenology of wood formation is a critical process to consider for predicting how trees from the temperate and boreal zones may react to climate change. Compared to leaf phenology, however, the determinism of wood phenology is still poorly known. Here, we compared for the first time three alternative ecophysiological model classes (threshold models, heat‐sum models and chilling‐influenced heat‐sum models) and an empirical model in their ability to predict the starting date of xylem cell enlargement in spring, for four major Northern Hemisphere conifers (Larix decidua, Pinus sylvestris, Picea abies and Picea mariana). We fitted models with Bayesian inference to wood phenological data collected for 220 site‐years over Europe and Canada. The chilling‐influenced heat‐sum model received most support for all the four studied species, predicting validation data with a 7.7‐day error, which is within one day of the observed data resolution. We conclude that both chilling and forcing temperatures determine the onset of wood formation in Northern Hemisphere conifers. Importantly, the chilling‐influenced heat‐sum model showed virtually no spatial bias whichever the species, despite the large environmental gradients considered. This suggests that the spring onset of wood formation is far less affected by local adaptation than by environmentally driven plasticity. In a context of climate change, we therefore expect rising winter–spring temperature to exert ambivalent effects on the spring onset of wood formation, tending to hasten it through the accumulation of forcing temperature, but imposing a higher forcing temperature requirement through the lower accumulation of chilling.  相似文献   

7.
Chilling (0–18°C) and freezing (<0°C) are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation) mediates the adaptation to cold stresses in nature (e.g., in alpine regions). Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h). To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling) and -4°C (freezing) over five periods of time (0–24 h). Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h). Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana to adapt to the intricate cold stresses in the alpine areas.  相似文献   

8.
Budburst phenology is a key driver of ecosystem structure and functioning, and it is sensitive to global change. Both cold winter temperatures (chilling) and spring warming (forcing) are important for budburst. Future climate warming is expected to have a contrasting effect on chilling and forcing, and subsequently to have a non-linear effect on budburst timing. To clarify the different effects of warming during chilling and forcing phases of budburst phenology in deciduous trees, (i) we conducted a temperature manipulation experiment, with separate winter and spring warming treatments on well irrigated and fertilized saplings of beech, birch and oak, and (ii) we analyzed the observations with five temperature-based budburst models (Thermal Time model, Parallel model, Sequential model, Alternating model, and Unified model). The results show that both winter warming and spring warming significantly advanced budburst date, with the combination of winter plus spring warming accelerating budburst most. As expected, all three species were more sensitive to spring warming than to winter warming. Although the different chilling requirement, the warming sensitivity was not significantly different among the studied species. Model evaluation showed that both one- and two- phase models (without and with chilling, respectively) are able to accurately predict budburst. For beech, the Sequential model reproduced budburst dates best. For oak and birch, both Sequential model and the Thermal Time model yielded good fit with the data but the latter was slightly better in case of high parameter uncertainty. However, for late-flushing species, the Sequential model is likely be the most appropriate to predict budburst data in a future warmer climate.  相似文献   

9.
The influence of large‐scale variables such as climate change on phenology has received a great deal of research attention. However, local environmental factors also play a key role in determining the timing of species life cycles. Using the meadow brown butterfly Maniola jurtina as an example, we investigate how a specific habitat type, lowland calcareous grassland, can affect the timing of flight dates. Although protracted flight periods have previously been reported in populations on chalk grassland sites in the south of England, no attempt has yet been made to quantify this at a national level, or to assess links with population genetics and drought tolerance. Using data from 539 sites across the UK, these differences in phenology are quantified, and Mjurtina phenology is found to be strongly associated with both site geology and topography, independent of levels of abundance. Further investigation into aspects of Mjurtina ecology at a subset of sites finds no genetic structuring or drought tolerance associated with these same site conditions.  相似文献   

10.
Temperature characteristics of excitability in the squid giant axon were measured for the space-clamped axon with the double sucrose gap technique. Threshold strength-duration curves were obtained for square wave current pulses from 10 µsec to 10 msec and at temperatures from 5°C to 35°C. The threshold change of potential, at which an action potential separated from a subthreshold response, averaged 17 mv at 20°C with a Q10 of 1.15. The average threshold current density at rheobase was 12 µa/cm2 at 20°C with a Q10 of 2.35 compared to 2.3 obtained previously. At short times the threshold charge was 1.5·10-8 coul/cm2. This was relatively independent of temperature and occasionally showed a minimum in the temperature range. At intermediate times and all temperatures the threshold currents were less than for both the single time constant model and the two factor excitation process as developed by Hill. FitzHugh has made computer investigations of the effect of temperature on the excitation of the squid axon membrane as represented by the Hodgkin-Huxley equations. These are in general in good agreement with our experimental results.  相似文献   

11.
Using first leaf unfolding data of Salix matsudana, Populus simonii, Ulmus pumila, and Prunus armeniaca, and daily mean temperature data during the 1981–2005 period at 136 stations in northern China, we fitted unified forcing and chilling phenology models and selected optimum models for each species at each station. Then, we examined performances of each optimum local species‐specific model in predicting leaf unfolding dates at all external stations within the corresponding climate region and selected 16 local species‐specific models with maximum effective predictions as the regional unified models in different climate regions. Furthermore, we validated the regional unified models using leaf unfolding and daily mean temperature data beyond the time period of model fitting. Finally, we substituted gridded daily mean temperature data into the regional unified models, and reconstructed spatial patterns of leaf unfolding dates of the four tree species across northern China during 1960–2009. At local scales, the unified forcing model shows higher simulation efficiency at 83% of data sets, whereas the unified chilling model indicates higher simulation efficiency at 17% of data sets. Thus, winter temperature increase so far has not yet significantly influenced dormancy and consequent leaf development of deciduous trees in most parts of northern China. Spatial and temporal validation confirmed capability and reliability of regional unified species‐specific models in predicting leaf unfolding dates in northern China. Reconstructed leaf unfolding dates of the four tree species show significant advancements by 1.4–1.6 days per decade during 1960–2009 across northern China, which are stronger for the earlier than the later leaf unfolding species. Our findings suggest that the principal characteristics of plant phenology and phenological responses to climate change at regional scales can be captured by phenological and climatic data sets at a few representative locations.  相似文献   

12.
Wind damage from cyclones can devastate the forest canopy, altering environmental conditions in the understory that affect seedling growth and plant community regeneration. To investigate the impact of hurricane‐induced increases in light and soil nutrients as a result of canopy defoliation, we conducted a two‐way factorial light and nutrient manipulation in a shadehouse experiment. We measured seedling growth of the dominant canopy species in the four Everglades forest communities: pine rocklands (Pinus elliottii var densa), cypress domes (Taxodium distichum), hardwood hammocks, and tree islands (Quercus virginiana and Bursera simaruba). Light levels were full sun and 50% shade, and nutrient levels coupled with an additional set of individuals that were subjected to a treatment mimicking the sudden effects of canopy opening from hurricane‐induced defoliation and the corresponding nutrient pulse. Seedlings were measured weekly for height growth and photosynthesis, with seedlings being harvested after 16 weeks for biomass, leaf area, and leaf tissue N and 13C isotope ratio. Growth rates and biomass accumulation responded more to differences in soil nutrients than differences in light availability, with largest individuals being in the high nutrient treatments. For Bsimaruba and P. elliottii, the highest photosynthetic rates occurred in the high light, high nutrient treatment, while Tdistichum and Qvirginiana photosynthetic rates were highest in low light, high nutrient treatment. Tissue biomass allocation patterns remained similar across treatments, except for Qvirginiana, which altered above‐ and belowground biomass allocation to increase capture of limiting soil and light resources. In response to the hurricane simulation treatment, height growth increased rapidly for Qvirginiana and Bsimaruba, with nonsignificant increases for the other two species. We show here that ultimately, hurricane‐adapted, tropical species may be more likely to recolonize the forest canopy following a large‐scale hurricane disturbance.  相似文献   

13.
Parkin KL  Kuo SJ 《Plant physiology》1989,90(3):1049-1056
Chilling at 4°C in the dark induced lipid degradation in cucumber (Cucumis sativa L.) fruit upon rewarming at 14°C. Rates of ethane evolution by fruits rewarmed after 3 days of chilling were up to four-fold higher than those evolved by unchilled (14°C) fruits (0.02-0.05 picomoles gram fresh weight−1 hour−1). This potentiation of lipid peroxidation occurred prior to irreversible injury (requiring 3 to 7 days of chilling) as indicated by increases in ethylene evolution and visual observations. Decreases in unsaturation of peel tissue glycolipids were observed in fruits rewarmed after 3 days of chilling, indicating the plastids to be the site of the early phases of chilling-induced peroxidation. Losses in unsaturation of tissue phospholipids were first observed only after chilling for 7 days. Phospholipase D activity appeared to be potentiated in fruits rewarmed after 7 days of chilling as indicated by a decrease in phosphatidylcholine (and secondarily phosphatidylethanolamine) with a corresponding increase in phosphatidic acid. These results indicate that lipid peroxidation may have a role in conferring chilling injury.  相似文献   

14.
One consequence of rising spring temperatures is that the optimum timing of key life‐history events may advance. Where this is the case, a population's fate may depend on the degree to which it is able to track a change in the optimum timing either via plasticity or via adaptation. Estimating the effect that temperature change will have on optimum timing using standard approaches is logistically challenging, with the result that very few estimates of this important parameter exist. Here we adopt an alternative statistical method that substitutes space for time to estimate the temperature sensitivity of the optimum timing of 22 plant species based on >200 000 spatiotemporal phenological observations from across the United Kingdom. We find that first leafing and flowering dates are sensitive to forcing (spring) temperatures, with optimum timing advancing by an average of 3 days °C?1 and plastic responses to forcing between ?3 and ?8 days °C?1. Chilling (autumn/winter) temperatures and photoperiod tend to be important cues for species with early and late phenology, respectively. For most species, we find that plasticity is adaptive, and for seven species, plasticity is sufficient to track geographic variation in the optimum phenology. For four species, we find that plasticity is significantly steeper than the optimum slope that we estimate between forcing temperature and phenology, and we examine possible explanations for this countergradient pattern, including local adaptation.  相似文献   

15.
Understanding the functional relationship between greenhouse gas fluxes and environmental variables is crucial for predicting the impacts of wetlands on future climate change in response to various perturbations. We examined the relationships between methane (CH4) emission and temperature in two marsh stands dominated by the Phragmites australis and Cyperus malaccensis, respectively, in a subtropical estuarine wetland in southeast China based on three years of measurement data (2007–2009). We found that the Q10 coefficient of CH4 emission to soil temperature (Qs10) from the two marsh stands varied slightly over the three years (P > 0.05), with a mean value of 3.38 ± 0.46 and 3.89 ± 0.41 for the P. australis and C. malaccensis stands, respectively. On the other hand, the three-year mean Qa10 values (Q10 coefficients of CH4 emission to air temperature) were 3.39 ± 0.59 and 4.68 ± 1.10 for the P. australis and C. malaccensis stands, respectively, with a significantly higher Qa10 value for the C. malaccensis stand in 2008 (P < 0.05). The seasonal variations of Q10 (Qs10 and Qa10) differed among years, with generally higher values in the cold months than those in the warm months in 2007 and 2009. We found that the Qs10 values of both stands were negatively correlated with soil conductivity, but did not obtain any conclusive results about the difference in Q10 of CH4 emission between the two tidal stages (before flooding and after ebbing). There were no significant differences in both Qs10 and Qa10 values of CH4 emission between the P. australis stand and the C. malaccensis stands (P > 0.05). Our results show that the Q10 values of CH4 emission in this estuarine marsh are highly variable across space and time. Given that the overall CH4 flux is governed by a suite of environmental factors, the Q10 values derived from field measurements should only be considered as a semi-empirical parameter for simulating CH4 emissions.  相似文献   

16.
Global climate change has led to rising temperatures and drought in boreal forests in Northeast China. In some areas, shrubs and trees coexist in high altitude and high latitude areas, and their differences with global warming may lead to significant changes in vegetation composition and distribution. Therefore, we compared the relationships between climate and growth for the most widely distributed dwarf shrub (Pinus pumila) and the two dominant tree species (Larix gmelinii and Pinus sylvestris var. mongolica) in boreal forests in the Daxing’an Mountains, China. A total of 340 tree-ring cores from 172 trees and 64 discs from shrubs were collected from four sites and compared the responses of shrub and tree growth to climate patterns using dendrochronological methods. The shrub and two tree species responded differently to interannual climate variance. The negative effect of growing season temperature was greater on growth of L.gmelinii and P. sylvestrisvar.mongolica than on P. pumila, and the promoting effect of winter and spring precipitation was greatest on P. pumila. Compared with the two tree species, P. pumila had a higher temperature threshold and grew over a shorter growing season. Our findings suggested that L. gmelinii and P. sylvestrisvar.mongolica are more susceptible to global warming than the shrubs that coexist with them. However, P.pumila should be studied from an individual perspective in the future due to the dwarf morphology of shrubs and their complex microenvironment.  相似文献   

17.
One of the reported changes of arctic ecosystems in response to warming climate is the advance of the leaf appearance in spring. Such phenological changes play a role in the structural changes within tundra ecosystem communities. Recently, we developed a model that estimates the leaf appearance date for deciduous trees in taiga. We apply this model to the whole low-arctic tundra, and we compare the simulated green-up dates with the green-up dates obtained from satellite observations and to in situ measurements of deciduous shrub leaf appearance. The model, although calibrated for taiga, performs remarkably well in tundra, with root mean square error ranging between 4 and 8 days for most of the tundra region, the same order as in taiga regions. The results seem to indicate that air temperature is the main factor controlling spring leaf phenology in tundra, just as in taiga, although these results do not permit us to reject soil temperature as the main trigger for leaf appearance in tundra. Because our model performs in tundra as well as in taiga, it can be used across the ecotone, and during a northward migration of the species from the taiga to the low-arctic region. The leaf appearance model and the satellite observations reveal that leaf appearance has tended to occur earlier by approximately 10 days both in Alaska since 1975, and in west Siberian tundra since 1965.  相似文献   

18.
This research was conducted to study the effect of three different sowing dates (15th October, 15th November and 15th December) and two vernalization treatments (5 °C and −20 °C) on leaf structure of Betavulgaris L. cv. Univers. The obtained data are summarized as follows:The maximum values of the most studied parameters; lower epidermis + spongy tissue thickness, midrib, mesophyll tissue, vascular bundle, collenchymatous tissue and number of xylem vessels per arm were found as a result of 15th October sowing date treatment compared with the two other sowing dates. Furthermore, effect of the cooling treatments varied according to the recorded character, sowing date and cooling degree. Most of the vernalization treatments at early sowing dates increased the mesophyll tissue, midrib, number of vascular bundles per transverse section, vascular bundle thickness and number of xylem arms per transverse section.The two studied cooling treatments at 15th October sowing date increased both stomatal index and average number of stomata: average number of epidermis cells compared with the control. Furthermore, 15th October under −20 °C treatment led to small epidermal cells and stomata formation, straight epidermal cell walls and closed stomata in comparison to the control.  相似文献   

19.
Solution scattering of neutrons and x-rays can provide direct information on local interactions of importance for biomolecular folding and structure. Here, neutron scattering experiments are combined with molecular-dynamics simulation to interpret the scattering signal of a series of dipeptides with varying degrees of hydrophobicity (GlyAla, GlyPro, and AlaPro) in concentrated aqueous solution (1:20 solute/water ratio) in which the peptides form large segregates (up to 50–60 amino acids). Two main results are found: 1), the shift to lower Q of the so-called water-ring peak (Q ≈ 2 Å−1) arises mainly from an overlap of water-peptide and peptide-peptide correlations in the region of 1.3 < Q < 2 Å−1, rather than from a shift of the water signal induced by the presence of the clusters; and 2), in the low-Q region (Q ≈ 0.6 Å−1) a positive peak is observed originating from both the solute-solute correlations and changes in the water structure induced by the formation of the clusters. In particular, the water molecules are found to be more connected than in the bulk with hydrogen-bonding directions tangential to the exposed hydrophobic surfaces, and this effect increases with increasing peptide hydrophobicity. This work demonstrates that important information on the (hydrophobic) hydration of biomolecules can be obtained in the very-small-angle region.  相似文献   

20.
Management is an effective tool for increasing the productivity of Mongolian pine (Pinus sylvestris var. mongolica). This species has been widely planted in China, especially in sandy lands. However, optimization of management practices had not been fully explored. We established a system dynamic model to evaluate the effects of thinning and of manipulation of water supply on the productivity and population density of a Mongolian pine forest (17 scenarios in total). Different levels of thinning increased the mean biomass of Mongolian pine over no-management to a range from 202 to 256 t·ha-1. Increasing water supply decreased the mean biomass of Mongolian pine to a range from 176 to 199 t·ha-1. These results indicated that thinning at different levels may lead to an increase in biomass accumulation, while manipulating water supply may decrease biomass. Further, thinning appeared more effective than increasing water supply in efforts at maintaining high productivity of Mongolian pine forests. Moreover, the highest biomass occurred in a scenario with a thinning intensity of 30% in over-mature trees, indicating that this thinning intensity was the most effective choice for to the maintenance of the highest biomass in Mongolian pine forests. This study informs about the interactions between Mongolian pine and forest management, and provides guidelines for the practice of management of this forest type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号