首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Resting sympathetic tone, a measure of physiological arousal, is decreased in patients with apathy and inertia, such as those with behavioral variant frontotemporal dementia (bvFTD) and other frontally-predominant disorders.

Objective

To identify the neuroanatomical correlates of skin conductance levels (SCLs), an index of resting sympathetic tone and apathy, among patients with bvFTD, where SCLs is decreased, compared to those with Alzheimer’s disease (AD), where it is not.

Methods

This study analyzed bvFTD (n = 14) patients and a comparison group with early-onset AD (n = 19). We compared their resting SCLs with gray matter and white matter regions of interest and white matter measures of fiber integrity on magnetic resonance imaging and diffusion tensor imaging.

Results

As expected, bvFTD patients, compared to AD patients, had lower SCLs, which correlated with an apathy measure, and more gray matter loss and abnormalities of fiber integrity (fractional anisotropy and mean diffusivity) in frontal-anterior temporal regions. After controlling for group membership, the SCLs were significantly correlated with white matter volumes in the cingulum and inferior parietal region in the right hemisphere.

Conclusion

Among dementia patients, SCLs, and resting sympathetic tone, may correlate with quantity of white matter, rather than with gray matter or with white matter fiber integrity. Loss of white matter volumes, especially involving a right frontoparietal network, may reflect chronic loss of cortical axons that mediate frontal control of resting sympathetic tone, changes that could contribute to the apathy and inertia of bvFTD and related disorders.  相似文献   

2.

Background

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disorder, characterised by widespread white matter damage. There is growing evidence that disturbances in iron metabolism contribute to white matter alterations.

Materials & Methods

We analysed the data of susceptibility-weighted imaging (SWI) of white matter in a cohort of 27 patients with ALS and 30 healthy age-matched controls.

Results

Signal alterations were found on SWI in the corpus callosum; along the corticospinal tract (subcortical motor cortex, posterior limb of the internal capsule and brainstem levels) and in the subgyral regions of frontal, parietal, temporal, occipital and limbic lobes. Alterations of white matter in the corpus callosum correlated with disease severity as assessed by the revised ALS functional rating scale.

Conclusion

SWI is capable of indicating iron and myelin disturbances in white matter of ALS patients. The SWI patterns observed in this study suggest that widespread alterations due to iron disturbances occur in patients with ALS and correlate with disease severity.  相似文献   

3.

Background

White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects.

Methods

Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years).

Results

CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects.

Conclusion

The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.  相似文献   

4.

Background and Purpose

Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts.

Materials and Methods

This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients.

Results

Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037).

Conclusion

Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing.  相似文献   

5.

Background

Reduced white matter integrity, as indicated by lower fractional anisotropy (FA) and higher mean diffusivity (MD), has been related to poorer perceptual speed (PS) performance. As the ε4 allele has been associated with lower white matter integrity in old age, this represents a potential mechanism through which APOE may affect PS.

Objective

To examine whether the association between APOE and PS is mediated by white matter microstructure in very old persons without dementia.

Method

Participants were selected from the population-based SNAC-K study. After excluding persons with dementia, preclinical dementia, and other neurological disorders, 652 persons (age range 78–90) were included in the study, of which 89 had data on diffusion tensor imaging (DTI). We used structural equation modeling to form seven latent white matter factors (FA and MD) and one latent PS factor. Separate analyses were performed for FA and MD and mediational analyses were carried out for tracts where significant associations were observed to both APOE and PS.

Results

APOE was associated with white matter microstructure in 2 out of 14 tracts; ε4 carriers had significantly lower FA in forceps major and higher MD in the cortico-spinal tract. Allowing the white matter microstructure indicators in these tracts to mediate the association between APOE and PS resulted in a markedly attenuated association between these variables. Bootstrapping statistics in the subsample with DTI data (n = 89) indicated that FA in forceps major significantly mediated the association between APOE and PS (indirect effect: -0.070, 95% bias corrected CIs -0.197 to -0.004).

Conclusion

Lower white matter integrity may represent one of several mechanisms through which APOE affects PS performance in elderly persons free of dementia and preclinical dementia.  相似文献   

6.

Background

Reduced white matter (WM) integrity is a fundamental aspect of pediatric multiple sclerosis (MS), though relations to resting-state functional MRI (fMRI) connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI) measures of WM microstructural integrity to resting-state network (RSN) functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.

Methods

This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13–24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years) and 16 age- and sex-matched healthy controls (HC). All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS). RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.

Results

Lower fractional anisotropy (FA) was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected). Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels). Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02), genu of the corpus callosum (r = -.553, p = .014), and left (r = -.467, p = .044) and right (r = -.615, p = .005) sagittal stratum.

Conclusions

Loss of WM microstructural integrity is associated with increased resting-state functional connectivity in pediatric MS, which may reflect a diffuse and potentially compensatory activation early in MS.  相似文献   

7.

Objective

To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO).

Methods

40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI).

Results

LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02).

Conclusions

This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.  相似文献   

8.

Background

Most studies provide evidence that the skin flush response to nicotinic acid (niacin) stimulation is impaired in schizophrenia. However, only little is known about niacin sensitivity in the ultra-high risk (UHR) phase of psychotic disorders.

Methods

We compared visual ratings of niacin sensitivity between adolescents at UHR for psychosis according to the one year transition outcome (UHR-T n = 11; UHR-NT n = 55) with healthy controls (HC n = 25) and first episode schizophrenia patients (FEP n = 25) treated with atypical antipsychotics.

Results

Contrary to our hypothesis niacin sensitivity of the entire UHR group was not attenuated, but significantly increased compared to the HC group, whereas no difference could be found between the UHR-T and UHR-NT groups. As expected, niacin sensitivity of FEP was attenuated compared to HC group. In UHR individuals niacin sensitivity was inversely correlated with omega-6 and -9 fatty acids (FA), but positively correlated with phospholipase A2 (inPLA2) activity, a marker of membrane lipid repair/remodelling.

Conclusions

Increased niacin sensitivity in UHR states likely indicates an impaired balance of eicosanoids and omega-6/-9 FA at a membrane level. Our findings suggest that the emergence of psychosis is associated with an increased mobilisation of eicosanoids prior to the transition to psychosis possibly reflecting a “pro-inflammatory state”, whereas thereafter eicosanoid mobilisation seems to be attenuated. Potential treatment implications for the UHR state should be further investigated.  相似文献   

9.

Background

Chronic stimulant abuse is associated with both impairment in decision making and structural abnormalities in brain gray and white matter. Recent data suggest these structural abnormalities may be related to functional impairment in important behavioral processes.

Methodology/Principal Findings

In 15 cocaine-dependent and 18 control subjects, we examined relationships between decision-making performance on the Iowa Gambling Task (IGT) and white matter integrity as measured by diffusion tensor imaging (DTI). Whole brain voxelwise analyses showed that, relative to controls, the cocaine group had lower fractional anisotropy (FA) and higher mean of the second and third eigenvalues (λ⊥) in frontal and parietal white matter regions and the corpus callosum. Cocaine subjects showed worse performance on the IGT, notably over the last 40 trials. Importantly, FA and λ⊥ values in these regions showed a significant relationship with IGT performance on the last 40 trials.

Conclusions

Compromised white matter integrity in cocaine dependence may be related to functional impairments in decision making.  相似文献   

10.

Background

There is limited research regarding the association between genes and cognitive intermediate phenotypes in those at risk for psychotic disorders.

Methods

We measured the association between established psychosis risk variants in dopamine D2 receptor (DRD2) and cognitive performance in individuals at age 23 years and explored if associations between cognition and these variants differed according to the presence of familial or clinical risk for psychosis. The subjects of the Oulu Brain and Mind Study were drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986). Using linear regression, we compared the associations between cognitive performance and two candidate DRD2 polymorphisms (rs6277 and rs1800497) between subjects having familial (n=61) and clinical (n=45) risk for psychosis and a random sample of participating NFBC 1986 controls (n=74). Cognitive performance was evaluated using a comprehensive battery of tests at follow-up.

Results

Principal components factor analysis supported a three-factor model for cognitive measures. The minor allele of rs6277 was associated with poorer performance on a verbal factor (p=0.003) but this did not significantly interact with familial or clinical risk for psychosis. The minor allele of rs1800497 was associated with poorer performance on a psychomotor factor (p=0.038), though only in those at familial risk for psychotic disorders (interaction p=0.049).

Conclusion

The effect of two DRD2 SNPs on cognitive performance may differ according to risk type for psychosis, suggesting that cognitive intermediate phenotypes differ according to the type (familial or clinical) risk for psychosis.  相似文献   

11.

Objective

To identify early changes in brain structure and function that are associated with cardiovascular risk factors (CVRF).

Design

Cross-sectional brain Magnetic Resonance I (MRI) study.

Setting

Community based cohort in three U.S. sites.

Participants

A Caucasian and African-American sub-sample (n= 680; mean age 50.3 yrs) attending the 25 year follow-up exam of the Coronary Artery Risk Development in Young Adults Study.

Primary and Secondary Outcomes

3T brain MR images processed for quantitative estimates of: total brain (TBV) and abnormal white matter (AWM) volume; white matter fractional anisotropy (WM-FA); and gray matter cerebral blood flow (GM-CBF). Total intracranial volume is TBV plus cerebral spinal fluid (TICV). A Global Cognitive Function (GCF) score was derived from tests of speed, memory and executive function.

Results

Adjusting for TICV and demographic factors, current smoking was significantly associated with lower GM-CBF and TBV, and more AWM (all <0.05); SA with lower GM-CBF, WM-FA and TBV (p=0.01); increasing BMI with decreasing GM-CBF (p<0003); hypertension with lower GM-CBF, WM-FA, and TBV and higher AWM (all <0.05); and diabetes with lower TBV (p=0.007). The GCS was lower as TBV decreased, AWM increased, and WM-FA (all p<0.01).

Conclusion

In middle age adults, CVRF are associated with brain health, reflected in MRI measures of structure and perfusion, and cognitive functioning. These findings suggest markers of mid-life cardiovascular and brain health should be considered as indication for early intervention and future risk of late-life cerebrovascular disease and dementia.  相似文献   

12.

Background

A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients.

Methods

We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures.

Results

Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts.

Conclusion

In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients.  相似文献   

13.

Background

Genetic evidence implicates the DISC1 gene in the etiology of a number of mental illnesses. Previously, we have reported association between DISC1 and measures of psychosis proneness, the Revised Social Anhedonia Scale (RSAS) and Revised Physical Anhedonia Scale (RPAS), in the Northern Finland Birth Cohort 1966 (NFBC66). As part of the studies of this Finnish birth cohort genome-wide association analysis has recently been performed.

Methodology

In the present study, we re-analyzed the genome-wide association data with regard to these two measures of psychosis proneness, conditioning on our previous DISC1 observation. From the original NFBC66 sample (N = 12 058), 4 561 individuals provided phenotype and genotype data. No markers were significant at the genome-wide level. However, several genes with biological relevance to mental illnesses were highlighted through loci displaying suggestive evidence for association (≥3 SNP with P<10E-4). These included the protein coding genes, CXCL3, KIAA1128, LCT, MED13L, TMCO7, TTN, and the micro RNA MIR620.

Conclusions

By conditioning a previous genome-wide association study on DISC1, we have been able to identify eight genes as associating to psychosis proneness. Further, these molecules predominantly link to the DISC1 pathway, strengthening the evidence for the role of this gene network in the etiology of mental illness. The use of quantitative measures of psychosis proneness in a large population cohort will make these findings, once verified; more generalized to a broad selection of disorders related to psychoses and psychosis proneness.  相似文献   

14.

Background

Findings of cerebral cortical atrophy, white matter lesions and microhemorrhages have been reported in high-altitude climbers. The aim of this study was to evaluate structural cerebral changes in a large cohort of climbers after an ascent to extreme altitudes and to correlate these findings with the severity of hypoxia and neurological signs during the climb.

Methods

Magnetic resonance imaging (MRI) studies were performed in 38 mountaineers before and after participating in a high altitude (7126m) climbing expedition. The imaging studies were assessed for occurrence of new WM hyperintensities and microhemorrhages. Changes of partial volume estimates of cerebrospinal fluid, grey matter, and white matter were evaluated by voxel-based morphometry. Arterial oxygen saturation and acute mountain sickness scores were recorded daily during the climb.

Results

On post-expedition imaging no new white matter hyperintensities were observed. Compared to baseline testing, we observed a significant cerebrospinal fluid fraction increase (0.34% [95% CI 0.10–0.58], p = 0.006) and a white matter fraction reduction (-0.18% [95% CI -0.32–-0.04], p = 0.012), whereas the grey matter fraction remained stable (0.16% [95% CI -0.46–0.13], p = 0.278). Post-expedition imaging revealed new microhemorrhages in 3 of 15 climbers reaching an altitude of over 7000m. Affected climbers had significantly lower oxygen saturation values but not higher acute mountain sickness scores than climbers without microhemorrhages.

Conclusions

A single sojourn to extreme altitudes is not associated with development of focal white matter hyperintensities and grey matter atrophy but leads to a decrease in brain white matter fraction. Microhemorrhages indicative of substantial blood-brain barrier disruption occur in a significant number of climbers attaining extreme altitudes.  相似文献   

15.

Introduction

The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes.

Method

Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations.

Results

Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter.

Conclusion

The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.  相似文献   

16.

Background

Familial correlations underlie heritability estimates of psychosis. If gene-environment interactions are important, familial correlation will vary as a function of environmental exposure.

Methods

Associations between sibling and parental schizotypy (n = 669 pairs, n = 1222 observations), and between sibling schizotypy and patient CAPE psychosis (n = 978 pairs, n = 1723 observations) were examined as a function of sibling cannabis use. This design is based on the prediction that in unaffected siblings who are not exposed, vulnerability for psychosis will remain latent, whereas in case of exposure, latent psychosis vulnerability may become expressed, at the level of schizotypal symptoms, causing the phenotypic correlation between relatives to become “visible” under the influence of cannabis.

Results

Siblings exposed to recent cannabis use resembled their patient-relative more closely in terms of positive schizotypy (urinalysis(+):B = 0.30, P<.001; urinalysis(-):B = 0.10, p<0.001; p-interaction = 0.0135). Similarly, the familial correlation in positive schizotypy between parent and sibling was significantly greater in siblings recently exposed to cannabis (urinalysis(+):B = 0.78, P<.001; urinalysis(-):B = 0.43, p<0.001; p interaction = 0.0017). Results were comparable when using lifetime cannabis frequency of use as exposure instead of recent use. Parental schizotypy did not predict cannabis use in the healthy sibling, nor in the patient. Similarly, parental cannabis use was not associated with level of schizotypy in the sibling, nor with psychotic symptoms in the patient, making gene-environment correlation unlikely.

Conclusion

Familial correlation of psychosis-related experiences varies considerably as a function of exposure to cannabis, confirming the importance of gene-cannabis interaction in shifts of expression of psychosis-related experiences.  相似文献   

17.

Background and Aims

EASL/AASLD hepatic encephalopathy (HE) guidelines proposed the alternative use of the term ‘Covert HE’ combining minimal HE (mHE) and Grade 1 HE into a single entity. However, longitudinal data to indicate that these are indeed a single entity are lacking. The aims of this study were to determine whether the occurrence of complications of cirrhosis requiring hospital admission and mortality were similar in these sub-groups of patients.

Methods

Clinically-stable cirrhotic patients (n = 106) with no previous history of ‘Overt HE’ were included over a 2-year period and classified as having no HE (n = 23), mHE (n = 39) or Grade 1 HE (n = 44). Standard biochemistry, venous ammonia, bacterial DNA and neutrophil function were measured at inclusion and the patients were followed for a mean of 230±95 days.

Results

Patients with Grade 1 HE had significantly more complications requiring hospitalisation (infection 9/18/34%; HE 4/8/18%; other 13/10/11%; P = 0.02) and significantly greater mortality (4/5/20%; P = 0.04) compared to patients with no HE or mHE respectively. Patients with mHE and grade 1 HE had similar ammonia levels, but higher than the no HE group (P<0.001). MELD score was similar between groups but Grade 1 HE patients had increased frequency of bacterial translocation (P = 0.06) and neutrophil spontaneous respiratory burst (P = 0.02) compared to patients with mHE.

Conclusions

The results of this study show for the first time that ‘Covert HE’ is a heterogeneous entity with significantly greater hospitalisations and mortality in the Grade 1 HE patients compared with mHE. Further prospective longer-term studies are required before EASL/AASLD guidance is fully implemented.  相似文献   

18.
Lin F  Zhou Y  Du Y  Qin L  Zhao Z  Xu J  Lei H 《PloS one》2012,7(1):e30253

Background

Internet addiction disorder (IAD) is currently becoming a serious mental health issue around the globe. Previous studies regarding IAD were mainly focused on associated psychological examinations. However, there are few studies on brain structure and function about IAD. In this study, we used diffusion tensor imaging (DTI) to investigate white matter integrity in adolescents with IAD.

Methodology/Principal Findings

Seventeen IAD subjects and sixteen healthy controls without IAD participated in this study. Whole brain voxel-wise analysis of fractional anisotropy (FA) was performed by tract-based spatial statistics (TBSS) to localize abnormal white matter regions between groups. TBSS demonstrated that IAD had significantly lower FA than controls throughout the brain, including the orbito-frontal white matter, corpus callosum, cingulum, inferior fronto-occipital fasciculus, and corona radiation, internal and external capsules, while exhibiting no areas of higher FA. Volume-of-interest (VOI) analysis was used to detect changes of diffusivity indices in the regions showing FA abnormalities. In most VOIs, FA reductions were caused by an increase in radial diffusivity while no changes in axial diffusivity. Correlation analysis was performed to assess the relationship between FA and behavioral measures within the IAD group. Significantly negative correlations were found between FA values in the left genu of the corpus callosum and the Screen for Child Anxiety Related Emotional Disorders, and between FA values in the left external capsule and the Young''s Internet addiction scale.

Conclusions

Our findings suggest that IAD demonstrated widespread reductions of FA in major white matter pathways and such abnormal white matter structure may be linked to some behavioral impairments. In addition, white matter integrity may serve as a potential new treatment target and FA may be as a qualified biomarker to understand the underlying neural mechanisms of injury or to assess the effectiveness of specific early interventions in IAD.  相似文献   

19.
20.

Objectives

Perivascular spaces are associated with MRI markers of cerebral small vessel disease, including white matter hyperintensities. Although perivascular spaces are considered to be an early MRI marker of cerebral small vessel disease, it is unknown whether they are associated with further progression of MRI markers, especially white matter hyperintensities. We determined the association between perivascular spaces and progression of white matter hyperintensities after 2-year follow-up in lacunar stroke patients.

Methods

In 118 lacunar stroke patients we obtained brain MRI and 24-hour ambulatory blood pressure measurements at baseline, and a follow-up brain MRI 2 years later. We visually graded perivascular spaces and white matter hyperintensities at baseline. Progression of white matter hyperintensities was assessed using a visual white matter hyperintensity change scale. Associations with white matter hyperintensity progression were tested with binary logistic regression analysis.

Results

Extensive basal ganglia perivascular spaces were associated with progression of white matter hyperintensities (OR 4.29; 95% CI: 1.28–14.32; p<0.05), after adjustment for age, gender, 24-hour blood pressure and vascular risk factors. This association lost significance after additional adjustment for baseline white matter hyperintensities. Centrum semiovale perivascular spaces were not associated with progression of white matter hyperintensities.

Conclusions

Our study shows that extensive basal ganglia perivascular spaces are associated with progression of white matter hyperintensities in cerebral small vessel disease. However, this association was not independent of baseline white matter hyperintensities. Therefore, presence of white matter hyperintensities at baseline remains an important determinant of further progression of white matter hyperintensities in cerebral small vessel disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号