首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC.  相似文献   

2.
Phosphoinositide 3-kinase (PI3K) is an important target in oncology due to the deregulation of the PI3K/Akt signaling pathway in a wide variety of tumors. A series of 4-amino-6-methyl-1,3,5-triazine sulfonamides were synthesized and evaluated as inhibitors of PI3K. The synthesis, in vitro biological activities, pharmacokinetic and in vivo pharmacodynamic profiling of these compounds are described. The most promising compound from this investigation (compound 3j) was found to be a pan class I PI3K inhibitor with a moderate (>10-fold) selectivity over the mammalian target of rapamycin (mTOR) in the enzyme assay. In a U87 MG cellular assay measuring phosphorylation of Akt, compound 3j displayed low double digit nanomolar IC(50) and exhibited good oral bioavailability in rats (F(oral)=63%). Compound 3j also showed a dose dependent reduction in the phosphorylation of Akt in a U87 tumor pharmacodynamic model with a plasma EC(50)=193nM (91ng/mL).  相似文献   

3.
Inhibition of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway by PI3K/mTOR dual inhibitors provides a promising new approach to the treatment of cancers. In this Letter, we identified structurally novel and potent PI3K/mTOR dual inhibitors from a series of 2-amino-4-methylpyrido[2,3-d]pyrimidine derivatives. Their synthesis and structure–activity relationships are reported.  相似文献   

4.
A series of new thienopyrimidine derivatives has been discovered as potent PI3K inhibitors. The systematic SAR studies for these analogues are described. Among them, 8a and 9a exhibit nanomolar enzymatic potencies and sub-micromolar cellular anti-proliferative activities. 8a displays favorable pharmacokinetic profiles, while 9a easily undergoes deacetylation to yield a major metabolite 8a. Furthermore, 8a and 9a potently inhibit tumor growth in a dose-dependent manner in the NCI-H460 xenograft model with an acceptable safety profile.  相似文献   

5.
The PI3K/AKT/mTOR pathway is one of the most commonly disrupted signaling pathways that plays a role in the development and pathogenicity of multiple cancers. Therefore, the critical proteins of this pathway have been targeted for anticancer therapy. The scientific community has increasingly been realizing the anti-cancer therapeutic potential of naphthoquinone analogs. These compounds constitute a major class of diverse sets of plant metabolites, which include various natural products and synthetic compounds with proven anticancer activity. The current study involved structural computational biology approaches to explore compounds from a diverse pool of naphthoquinone analogs that can inhibit key cancer-signaling proteins phosphoinositide 3-kinase (PI3K), protein kinase B, PKB (AKT), and mammalian target of rapamycin (mTOR). The novel compound identified commonly among the top 10 dock score lists of PI3K, AKT, and mTOR was selected for further study and proposed as a potential inhibitor of the 3 cancer-signaling proteins and an anticancer agent. Further, to check the docking accuracy and potential of the compound, post docking analyses, namely, binding comparison with the native ligand, the role of the interacting residue role in binding, predicted binding energy and dissociation constant calculations, etc., were performed. All these measures showed good-quality binding, and thus provide weight to our prediction of the novel compound as a pan PI3K/AKT/mTOR inhibitor and an anticancer agent. Finally, to compare the binding and similarity in the active sites of the 3 protein kinases, a ligand-based active site alignment was performed and analyzed. Thus, the study proposed a novel naphthoquinone analog as a potential anticancer drug, and provided comparative structural insight into its binding to the 3 protein kinases.  相似文献   

6.
Intra-molecular hydrogen bonding was introduced to the quinazoline motif to form a pseudo ring (intra-molecular H-bond scaffold, iMHBS) to mimic our previous published core structures, pyrido[2.3-D]pyrimidin-7-one and pteridinone, as PI3K/mTOR dual inhibitors. This design results in potent PI3K/mTOR dual inhibitors and the purposed intra-molecular hydrogen bonding structure is well supported by co-crystal structure in PI3Kγ enzyme. In addition, a novel synthetic route was developed for these analogs.  相似文献   

7.
We recently described several highly potent, triazine (1) and triazolopyrimidine (2) scaffold-based, dual PI3K/mTOR-inhibitors (e.g., 1, PKI-587) that were efficacious in both in vitro and in vivo models. In order to further optimize these compounds we devised a novel series, the 2-oxatriazines, which also exhibited excellent potency and good metabolic stability. Some 2-oxatriazines showed promising in vivo biomarker suppression and induced apoptosis in the MDA-MB-361 breast cancer xenograft model.  相似文献   

8.
A series of 3H-imidazo [4,5-b] pyridines derivatives were designed and synthesized as selective mTOR inhibitors. The systematic optimization of the molecules resulted in the identification of two compounds 10d and 10n with nanomolar mTOR inhibitory activity and selectivity over PI3Kα. Besides, compounds 10d and 10n demonstrated attractive potency against human breast cancer cells (MCF-7) and human ovarian cancer cell (A2780).  相似文献   

9.
Reduction in or dysfunction of glutamate transporter 1 (GLT1) is linked to several neuronal disorders such as stroke, Alzheimer’s disease, and amyotrophic lateral sclerosis. However, the detailed mechanism underlying GLT1 regulation has not been fully elucidated. In the present study, we first demonstrated the effects of mammalian target of rapamycin (mTOR) signaling on GLT1 regulation. We prepared astrocytes cultured in astrocyte-defined medium (ADM), which contains several growth factors including epidermal growth factor (EGF) and insulin. The levels of phosphorylated Akt (Ser473) and mTOR (Ser2448) increased, and GLT1 levels were increased in ADM-cultured astrocytes. Treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor or an Akt inhibitor suppressed the phosphorylation of Akt (Ser473) and mTOR (Ser2448) as well as decreased ADM-induced GLT1 upregulation. Treatment with the mTOR inhibitor rapamycin decreased GLT1 protein and mRNA levels. In contrast, rapamycin did not affect Akt (Ser473) phosphorylation. Our results suggest that mTOR is a downstream target of the PI3K/Akt pathway regulating GLT1 expression.  相似文献   

10.
缺氧诱导因子1与PI3K/Akt/mTOR信号转导通路   总被引:6,自引:0,他引:6  
孙胜  高钰琪  高文祥  范明 《生命科学》2005,17(4):311-314
缺氧诱导因子1(HIF-1)是参与缺氧调节的核心因子,可调控一系列缺氧诱导基因的表达,与机体许多生理和病理过程也密切相关。尽管一些研究显示缺氧和非缺氧性刺激可通过PI3K/Akt/mTOR信号途径诱导HIF-1的表达和活性,PI3K信号途径是否参与对HIF-1的调节仍然是个有争议的研究热点。明确HIF-1和PI3K的相互作用关系,能进一步为肿瘤等相关疾病的防治提供新的思路和方法。本文主要就HIF-1和PI3K/Akt/mTOR关系作一简要综述。  相似文献   

11.
The discovery of ligand efficient and lipophilicity efficient fragment inhibitors of class 1 phosphatidylinositide 3-kinases (PI3K) is reported. A fragment version of the AstraZeneca compound bank was docked to a homology model of the PI3K p110β isoform. Interaction-based scoring of the predicted binding poses served to further prioritise the virtual fragment hits. Experimental screening confirmed potency for a total of 18 fragment inhibitors, belonging to five different structural classes.  相似文献   

12.
We report here the discovery of a novel series of selective mTOR kinase inhibitors. A series of imidazo[4,5-b]pyrazin-2-ones, represented by screening hit 1, was developed into lead compounds with excellent mTOR potency and exquisite kinase selectivity. Potent compounds from this series show >1000-fold selectivity over the related PI3Kα lipid kinase. Further, compounds such as 2 achieve mTOR pathway inhibition, blocking both mTORC1 and mTORC2 signaling, in PC3 cancer cells as measured by inhibition of pS6 and pAkt (S473).  相似文献   

13.
14.
A series of N-7-methyl-imidazolopyrimidine inhibitors of the mTOR kinase have been designed and prepared, based on the hypothesis that the N-7-methyl substituent on imidazolopyrimidine would impart selectivity for mTOR over the related PI3Kα and δ kinases. The corresponding N-Me substituted pyrrolo[3,2-d]pyrimidines and pyrazolo[4,3-d]pyrimidines also show potent mTOR inhibition with selectivity toward both PI3α and δ kinases. The most potent compound synthesized is pyrazolo[4,3-d]pyrimidine 21c. Compound 21c shows a Ki of 2 nM against mTOR inhibition, remarkable selectivity (>2900×) over PI3 kinases, and excellent potency in cell-based assays.  相似文献   

15.
The T-cell immunoglobulin and mucin domain 3 (Tim-3) is a plasma membrane-associated protein that is highly expressed in human acute myeloid leukaemia cells. As an acute myeloid leukaemia antigen, it could therefore be considered as a potential target for immune therapy and highly-specific drug delivery. However, a conceptual understanding of its biological role is required before consideration of this protein for therapeutic settings. Here, we reveal the detailed mechanism of action underlying the biological responses mediated by the Tim-3 receptor in myeloid cells. Our studies demonstrate that Tim-3 triggers growth factor type responses in acute myeloid leukaemia cells by activating a phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway. In addition, the receptor activates hypoxic signalling pathways upregulating glycolysis and pro-angiogenic responses. These findings suggest that Tim-3 could be used as a potential therapeutic target for immune therapy and drug delivery in human acute myeloid leukaemia cells.  相似文献   

16.
PB2 is an important subunit of influenza RNA-dependent RNA polymerase (RdRP) and has been recognized as a promising target for the treatment of influenza. We herein report the discovery of a new series of PB2 inhibitors containing the skeleton 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one. Compound 12b is the most potent one, which showed KD values of 0.11 μM and 0.19 μM in surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays, respectively. In antiviral activity and cellular cytotoxicity assays, compound 12b showed an EC50 value of 1.025 μM and a CC50 value greater than 100 μM. Molecular docking was also used to predict the binding mode of 12b with PB2. Collectively, this study provides a promising lead compound for subsequent anti-influenza drug discovery targeting PB2.  相似文献   

17.
New potent glycogen synthase kinase-3 (GSK-3) inhibitors, 8-amino-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one derivatives, were designed by modeling, synthesized and evaluated in vitro. Compound 17c showed good potency in enzyme and cell-based assays (IC50 = 111 nM, EC50 = 1.78 μM). Moreover, it has demonstrated desirable water solubility, PK profile, and moderate brain penetration.  相似文献   

18.
A series of novel 5-(benzyloxy)pyridin-2(1H)-ones were designed, synthesized and biologically evaluated for c-Met inhibition. Various amides and benzoimidazoles at C-3 position were investigated. A potent compound 12b with a c-Met IC50 of 12 nM was identified. This compound exhibited potent inhibition of EBC-1 cell associated with c-Met constitutive activation and showed high selectivity for c-Met than other tested 11 kinases. The binding model 12b with c-Met was disclosed by docking analysis.  相似文献   

19.
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.  相似文献   

20.
Neuraminidase has been considered as an important target for designing agents against influenza viruses. In a discovery of anti-influenza agents with epigoitrin as the initial lead compound, a series of 1-amino-2-alkanols were synthesized and biologically evaluated. The in vitro evaluation indicated that (E)-1-amino-4-phenylbut-3-en-2-ol (C1) had better inhibitory activities than 2-amino-1-arylethan-1-ol derivatives. To our surprise, sulfonation of C1 with 4-methoxybenzenesulfonyl chloride afforded more active inhibitor II with up to 6.4?μM IC50 value against neuraminidase. Furthermore, docking of inhibitor II into the active site of NA found that the H atoms in both NH2 and OH groups of inhibitor II were the key factors for potency. Molecular docking research did not explained very well the observed structure-activity relationship (SAR) from amino acid residue level, but also aided the discovery of (E)-1-amino-4-phenylbut-3-en-2-ol derivatives as novel and potent NA inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号