首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxisome proliferator-activated receptor gamma (PPARγ) modulators have found wide application for the treatment of cancers, metabolic disorders and inflammatory diseases. Contrary to PPARγ agonists, PPARγ antagonists have been much less studied and although they have shown immunomodulatory effects, there is still no therapeutically useful PPARγ antagonist on the market. In contrast to non-competitive, irreversible inhibition caused by 2-chloro-5-nitrobenzanilide (GW9662), the recently described (E)-2-(5-((4-methoxy-2-(trifluoromethyl)quinolin-6-yl)methoxy)-2-((4-(trifluoromethyl)benzyl)oxy)-benzylidene)-hexanoic acid (MTTB, T-10017) is a promising prototype for a new class of PPARγ antagonists. It exhibits competitive antagonism against rosiglitazone mediated activation of PPARγ ligand binding domain (PPARγLBD) in a transactivation assay in HEK293T cells with an IC50 of 4.3 µM against 1 µM rosiglitazone. The aim of this study was to investigate the structure-activity relationships (SAR) of the MTTB scaffold focusing on improving its physicochemical properties. Through this optimization, 34 new derivatives were prepared and characterized. Two new potent compounds (T-10075 and T-10106) with much improved drug-like properties and promising pharmacokinetic profile were identified.  相似文献   

2.
3.
Small molecule agonism of PPARα represents a promising new avenue for the development of non-invasive treatments for oculovascular diseases like diabetic retinopathy and age-related macular degeneration. Herein we report initial structure–activity relationships for the newly identified quinoline-based PPARα agonist, Y-0452. Preliminary computational studies led to the hypothesis that carboxylic acid transposition and deconstruction of the Y-0452 quinoline system would enhance ligand–protein interactions and better complement the nature of the binding pocket. A focused subset of analogs was designed, synthesized, and assessed for PPARα agonism. Two key observations arose from this work 1) contrary to other PPARα agonists, incorporation of the fibrate “head-group” decreases PPARα selectivity and instead provides pan-PPAR agonists and 2) computational models reveal a relatively unexploited amphiphilic pocket in PPARα that provides new opportunities for the development of novel agonists. As an example, compound 10 exhibits more potent PPARα agonism (EC50?=?~6?µM) than Y-0452 (EC50?=?~50?µM) and manifests >20-fold selectivity for PPARα over the PPARγ and PPARδ isoforms. More detailed biochemical analysis of 10 confirms typical downstream responses of PPARα agonism including PPARα upregulation, induction of target genes, and inhibition of cell migration.  相似文献   

4.
过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor γ,PPARγ)是一种配体依赖的核转录因子,属于Ⅱ型核激素受体超家族成员.以前的研究主要集中于PPARy在调控脂质代谢、糖代谢、免疫炎症、细胞增殖和分化等方面的作用.随着研究的深入,PPARγ在肿瘤中发挥...  相似文献   

5.
In the present study, we investigated the in vitro effects of peroxisome proliferator activated receptor (PPAR) ligands on PGF secretion and mRNA expression of prostaglandin F synthase (PGFS) in porcine endometrial explants collected on days 10–12 and 14–16 of the estrous cycle or pregnancy. The explants were incubated for 6 h with: PPARα ligands – WY-14643 (agonist) and MK 886 (antagonist); PPARβ ligands – l-165,041 (agonist) and GW 9662 (antagonist); PPARγ ligands – 15d-prostaglandin J2 (PGJ2, agonist), rosiglitazone (agonist) and T0070907 (antagonist). The expression of PGFS mRNA in the endometrium and the concentration of PGF in culture media were determined by real time RT-PCR and radioimmunoassay, respectively. During the estrous cycle (days 10–12 and 14–16), the agonists – WY-14643 (PPARα), l-165,041 (PPARβ), PGJ2 and rosiglitazone (PPARγ) – increased PGF secretion but did not affect PGFS mRNA abundance. During pregnancy (days 10–12 and 14–16), PPARα and PPARγ ligands did not change PGF release, whereas PPARβ agonist augmented PGF release on days 14–16 of pregnancy. In addition, WY-14643 and l-165,041 increased PGFS mRNA level in both examined periods of pregnancy. PPARγ agonist (PGJ2) and antagonist (T0070907) enhanced PGFS mRNA abundance in the endometrium on days 10–12 and 14–16 of pregnancy, respectively. The results indicate that PPARs are involved in the production of PGF by porcine endometrium, and that the sensitivity of the endometrium to PPAR ligands depends on reproductive status of animals.  相似文献   

6.
Synovial macrophage polarization and inflammation are essential for osteoarthritis (OA) development, yet the molecular mechanisms and regulation responsible for the pathogenesis are still poorly understood. Here, we report that pseudolaric acid B (PAB) attenuated articular cartilage degeneration and synovitis during OA. PAB, a diterpene acid, specifically inhibited NF-κB signalling and reduced the production of pro-inflammatory cytokines, which further decreased M1 polarization and vessel formation. We further provide in vivo and in vitro evidences that PAB suppressed NF-κB signalling by stabilizing PPARγ. Using PPARγ antagonist could abolish anti-inflammatory effect of PAB and rescue the activation of NF-κB signalling during OA. Our findings identify a previously unrecognized role of PAB in the regulation of OA and provide mechanisms by which PAB regulates NF-κB signalling through PPARγ, which further suggest targeting synovial inflammation or inhibiting vessel formation at early stage could be an effective preventive strategy for OA.  相似文献   

7.
8.
9.
10.
We previously published on the design and synthesis of novel, potent and selective PPARα antagonists suitable for either i.p. or oral in vivo administration for the potential treatment of cancer. Described herein is SAR for a subsequent program, where we set out to identify selective and potent PPARα/δ dual antagonist molecules. Emerging literature indicates that both PPARα and PPARδ antagonism may be helpful in curbing the proliferation of certain types of cancer. This dual antagonism could also be used to study PPARs in other settings. After testing for selective and dual potency, off-target counter screening, metabolic stability, oral bioavailability and associated toxicity, compound 11, the first reported PPARα/δ dual antagonist was chosen for more advanced preclinical evaluation.  相似文献   

11.
PPARα and PPARγ have been the most widely studied Peroxisome proliferator-activated receptor (PPAR) subtypes due to their important roles in regulating glucose, lipids, and cholesterol metabolism. By combining the lowering serum triglyceride levels benefit of PPARα agonists (such as fibrates) with the glycemic advantages of the PPARγ agonists (such as TZD), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence, has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of virtual screening, ADMET prediction and molecular dynamics (MD) simulations techniques, one compound-ASN15761007 with high binding score, low toxicity were gained. It was observed by MD simulations that ASN15761007 not only possessed the same function as AZ242 did in activating PPARα and BRL did in activating PPARγ, but also had more favorable conformation for binding to the two receptors. Our results provided an approach to rapidly produce novel PPARα/γ dual agonists which might be a potential lead compound to develop against insulin resistance and hyperlipidemia.  相似文献   

12.
鹅PPAR基因全长cDNA的克隆和序列分析   总被引:4,自引:0,他引:4  
孟和  李辉  王宇祥 《遗传》2004,26(4):469-472
PPAR基因是近年发现的与脂类代谢有重要关联的核受体基因。本项研究参考鸡、人类、啮齿类等动物的PPAR基因序列,用RT-PCR方法首次获得了鹅PPARα和PPARγ基因的cDNA序列,2个基因CDS长度分别为1407bp和1428bp。鹅与鸡、人、鼠等5种动物PPARα基因、PPARγ基因CDS序列同源性分别为87.43%、92.00%,氨基酸序列同源性分别为93.38%、96.95%。进一步对包括鹅在内的17个物种PPAR基因的CDS序列进行同源性比较结果显示,PPAR基因不同亚型的同源性相对较低,为66.18%;PPAR基因相同亚型的同源性很高,PPARα、PPARγ和PPARβ(PPARδ)的同源性分别为84.80%、86.23%和 87.36%。这些研究结果反应了PPAR基因在进化过程中是保守的,并且不同的亚型在基因组成和功能上有一定的差异,它将有利于对PPAR基因与鹅生长及脂类代谢关系的进一步研究。Abstract:The peroxisome proliferator activated receptor (PPAR) belongs to a large family of nuclear receptors. This study was designed to clone and sequence analysis of cDNA encoding PPAR from goose .The RT-PCR method was developed to clone the cDNA, and the lengths of cDNA encoding PPARαand PPARγwere1407bp and 1428bp respectively. The cDNAs of the two genes were cloned and sequenced for the first time. The identities of CDS of PPARαand PPARγgene were 87.43% and 92.00% by homologous comparison among goose and other five species, and that were 93.38% and 96.95% in amino acid sequences. The further analysis among seventeen species including goose showed that the identities of PPAR genes were low(66.18%) among different sub-type (α、γ、β) of PPAR genes and that was high for the same sub-type of PPAR genes: PPARα、PPARγ and PPARβ(or PPARδ) were 84.80%、86.23% and 87.36% respectively. The results showed that these two genes are conservative in the process of evolution and has important physiological function for the growth and development of birds and mammals. The results of the present study will benefit the further study of relationship between PPAR genes and the growth and development, especially in fat metabolism of goose.  相似文献   

13.
In our search for new PPARα/γ agonists, we designed and synthesized a series of benzoylazole-based carboxylic acids. Compound 9 showed potent PPARγ partial agonistic activity with modest PPARα agonistic activity. The sodium salt of 9 (9Na) demonstrated potent efficacy in lowering both blood glucose and lipids in an animal model without causing significant body weight gain, a well-known side effect associated with PPARγ full agonists.  相似文献   

14.
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor with an important role in the glucose metabolism and a target for type 2 diabetes mellitus therapy. The recent findings relating the use of the receptor full agonist rosiglitazone and the incidence of myocardial infarction raised concerns regarding whether receptor activation can actually be useful for diabetes management. The discovery of MRL-24 and GQ-16, ligands that can partially activate PPARγ and prevent weight gain and fluid retention, showed that a submaximal receptor activation can be a goal in the development of new ligands for PPARγ. Additionally, two previously described receptor antagonists, SR-202 and BADGE, were also shown to improve insulin sensitivity and decrease TNF-α level, revealing that receptor antagonism may also be an approach to pursue. Here, we used a structure-based approach to screen the subset ‘Drugs-Now’ of ZINC database. Fifteen ligands were selected after visual inspection and tested for their ability to bind to PPARγ. A benzoimidazol acetate, a bromobenzyl-thio-tetrazol benzoate and a [[2-[(1,3-dioxoinden-2-ylidene)methyl]phenoxy]methyl]benzoate were identified as PPARγ ligands, with IC50 values smaller than 10 μM. Molecular dynamic simulations showed that the residues H323, H449, Y327, Y473, K367 and S289 are key structural elements for the molecular recognition of these ligands and the polar arm of PPARγ binding pocket.  相似文献   

15.
16.
Peroxisome proliferator-activated receptor (PPAR)-α mediates an adaptive response to fasting by up-regulation of genes involved in fatty acid oxidation and ketone body synthesis. Ketone bodies are transferred in and out of cells by monocarboxylate transporter (MCT)-1. In this study we observed for the first time that activation of PPARα in rats by clofibrate treatment or fasting increased hepatic mRNA concentration of MCT1. In Fao rat hepatoma cells, incubation with the PPARα agonist WY 14,643 increased mRNA concentration of MCT1 whereas the PPARγ agonist troglitazone did not. To elucidate whether up-regulation of MCT1 is indeed mediated by PPARα we treated wild-type and PPARα-null mice with WY 14,643. In wild-type mice, treatment with WY 14,643 increased mRNA concentrations of MCT1 in liver, kidney and small intestine whereas no up-regulation was observed in PPARα-null mice.  相似文献   

17.
PPAR家族及其与代谢综合征的关系   总被引:17,自引:0,他引:17  
过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors,PPARs)是配体激活的转录因子核受体超家族成员之一。目前已知有三种亚型:PPARα、-β/δ和-γ。它们在脂肪生成、脂质代谢、胰岛素敏感性、炎症和血压调节中起着关键作用,因而近年来倍受关注。越来越多的研究表明,PPARs与代谢综合征,包括胰岛素抵抗、糖耐量受损、2型糖尿病、肥胖、高脂血症、高血压病、动脉粥样硬化和蛋白尿之间存在因果关系。重要的是,PPARα的激动剂如贝丁酸类降脂药(Fibrate)和PPARγ的激动剂如噻唑烷二酮(Thiazolidinedione,TZD)均已被证实有改善代谢综合征的作用。此外,三种PPAR亚型在2型糖尿病及糖尿病肾病的发展中均有重要作用。不断增加的证据提示,PPARs有可能成为代谢综合征及其相关并发症的潜在治疗靶点。本文将就PPARs的生物学活性、配体选择性和生理学功能作一综述,并对其在代谢综合征发病机制中的作用和PPAR配体对2型糖尿病的治疗效用进行重点讨论。  相似文献   

18.
N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4′-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4′-selenoadenosine-5′-N-methyluronamide (3e) and related 4′-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4′-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4′-oxoadenosine, that of 4′-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4′-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.  相似文献   

19.
20.
庄瑞春  杨俊卿 《生命科学》2008,20(1):101-104
PPARβ是配体活化的核转录因子,属核受体超家族成员。PPARβ在哺乳动物体内表达十分丰富,日前对PPARβ的研究比较少,但现有的研究表明PPARβ可能参与了机体多种生理和病理过程。本文将对PPARβ的生物学特征及其在中枢神经系统中的意义作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号