首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lack of selectivity of all existing ATP competitive inhibitors for a single cyclin-dependent kinase (CDK) has led us to redirect the structure-based molecule design from targeting the classic ATP-binding pocket in CDK5 toward the CDK5/p25 interface. The aim was to seek novel inhibition mechanisms to interrupt protein-protein interactions. A combined strategy of alanine-scanning calculations for locating binding sites, virtual screening for small molecules, molecular dynamics simulations for examining the binding stability of virtual screening hits and bio-assays for testing the level of inhibition was set up and used to explore novel inhibitors capable of interrupting the interactions between the proteins, and consequently of inhibiting the kinase activity. Two compounds were shown to inhibit the complex formation between CDK5 and p25 through p25 binding. They could open avenues for the discovery of new types of structures that prevent interactions between CDK5 and p25 or other CDK and activator proteins, and, more importantly, provide leads in the development of selective inhibitors among CDKs.  相似文献   

2.
Cyclin-dependent kinases (CDKs) are promising drug targets for various human diseases, especially for cancers. Scaffold hopping strategy was applied on CAN508, a known selective CDK9 inhibitor, and a series of pyrazolo[3,4-b]pyridine compounds were synthesized and evaluated in vitro as CDK2 and CDK9 inhibitors. Most compounds exhibited moderate to potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems. Among them, compound 2e showed IC50 values of 0.36?μM for CDK2 and 1.8?μM for CDK9, respectively. Notably, the scaffold alteration seems to cause a shift in the selectivity profile of the inhibitors. In contrast to CAN508, compound 2k demonstrated remarkable selectivity toward CDK2 (265-fold over CDK9). Docking studies on compound 2k provided hints for further design of more potent and selective CDK2/CDK9 inhibitors.  相似文献   

3.
Described herein is the design, synthesis and biological evaluation of a series of N-(1H-pyrazol-3-yl)quinazolin-4-amines against a panel of eight disease relevant protein kinases. The kinase inhibition results indicated that two compounds inhibited casein kinase 1δ/ε (CK1δ/ε) with some selectivity over related kinases, namely CDK5/p25, GSK-3α/β, and DYRK1A. Docking studies with 3c and 3d revealed the key interactions with desired amino acids in the ATP binding site of CK1δ. Furthermore, compound 3c also elicited selective cytotoxic activity against the pancreas ductal adenocarcinoma (PANC-1) cell line. Taken together, the results of this study establish N-(1H-pyrazol-3-yl)quinazolin-4-amines especially 3c and 3d as valuable lead molecules with great potential for CK1δ/ε inhibitor development targeting neurodegenerative disorders and cancer.  相似文献   

4.
Cyclin-dependent kinases 4/6 play an important role in regulation of cell cycle, and overexpress in a variety of cancers. Up to now, new CDK inhibitors still need to be developed due to its poor selectivity. Herein we report a novel series of 4-(2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazole-7-yl)-N-(5-(piperazin-1-ylmethyl)pyridine-2-yl)pyrimidin-2-amine anologues as potent CDK 4/6 inhibitors based on LY2835219 (Abemaciclib). Compound 10d, which exhibits approximate potency on CDK4/6 (IC50?=?7.4/0.9?nM), has both good pharmacokinetic characters and high selectivity on CDK1 compared with LY2835219. Overall, compound 10d could be a promising candidate and a good starting point as anticancer drugs.  相似文献   

5.
We present the design, synthesis and biological activity of a new series of substituted 3-(2-(1H-indol-1-yl)ethyl)-1H-indoles and 1,2-di(1H-indol-1-yl)alkanes as selective inhibitors of CDK4/cyclin D1. The compounds were designed to explore the relationship between the connection mode of the indolyl moieties and their CDK inhibitory activities. We found all the above-mentioned designed compounds to be selective inhibitors of CDK4/cyclin D1 compared to the closely related CDK2/cyclin A, with IC50 for the best compounds 10m and 13a being 39 and 37 μm, respectively.  相似文献   

6.
A series of thiazole bearing thiazolidin-4-one was discovered via high-throughput screening as non-competitive inhibitors of ADAMTS-5. Compound 31 appeared to give the best ADAMTS-5 inhibition and good selectivity over other metalloproteases.  相似文献   

7.
Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that has been proved as a key target for neurodegenerative diseases and diabetes. Up to date, most of known inhibitors are bound to the ATP-binding pocket of GSK-3β, which might lead widespread effects due to the high homology between kinases. Recently, some of its non-ATP competitive inhibitors had been confirmed having therapeutical effects owing to their high selectivity. This finding opens a new pathway to study hopeful drugs for treatment of these diseases. However, it is still a challenge nowadays on how to efficiently find non-ATP competitors. Here, we successfully discovered a novel scaffold of benzothiazepinones (BTZs) as selective non-ATP competitive GSK-3β inhibitors through virtual screening approach. A 3D receptor model of substrate binding site of GSK-3β was constructed and applied to screen against drug-like Maybridge database through Autodock program. BTZ compounds were top ranked as efficient hits and were then synthesized for further screening. Among them, the representative compound 4j showed activity to GSK-3β (IC50: 25 μM) in non-ATP competitive mechanism, and nearly no inhibitory effect on other 10 related protein kinases. Overall, the results point out that BTZ compounds might be useful in treatment of Alzheimer’s disease and diabetes mellitus as novel GSK-3β inhibitors. It also suggests, on the other hand, that virtual screening would provide a valuable tool in combination with in vitro assays for the identification of novel selective and potent inhibitors.  相似文献   

8.
Novel dipeptidyl peptidase IV (DPP-IV) inhibitors with a phenethylphenylphthalimide skeleton were prepared based on α-glucosidase inhibitors and liver X receptor (LXR) antagonists derived from thalidomide. Representative compounds showed non-competitive inhibition of DPP-IV and 28a exhibited 10-fold selectivity for DPP-IV over DPP-8. Compound 28a is the first non-competitive, selective DPP-IV inhibitor.  相似文献   

9.
Human DNA topoisomerase IIα (htIIα) is a validated target for the development of anticancer agents. Starting from the available information about the binding of the purine-based htIIα inhibitors in the ATP binding site we designed a virtual screening campaign combining structure-based and ligand-based pharmacophores with a molecular docking calculation searching for compounds that would contain a monocycle mimetic of the purine moiety. We discovered novel 4-amino-6-(phenylamino)-1,3,5-triazines 6, 7 and 11 as monocyclic htIIα inhibitors targeting the ATP binding site. Compound 6 from the 1,3,5-triazine series also displayed cytotoxicity properties in hepatocellular carcinoma (HepG2) cell lines and selectivity against human umbilical vein endothelial (HUVEC) cell lines.  相似文献   

10.
Structure-based 3D-QSAR approaches (CoMFA and CoMSIA) were applied to understand the structural requirements of the Cyclin-dependent kinase 5/p25 inhibitors. Cyclin-dependent kinase 5 (CDK5) is believed to play an important role in the development of the central nervous system during the process of mammalian embryogenesis. Genetic algorithm based docking program (GOLD) was successfully utilized to orient the compounds inside the binding pocket of the CDK5/p25 structure. The adapted alignment method with the suitable parameters resulted in a reliable model. Furthermore, the final model was robust enough to forecast the activities of test compounds, satisfactorily. The contour maps were produced around the functional groups to understand the SAR requirements. Moreover, we also investigate the structural attributes of the inhibitors which make them selective toward CDK5/p25 over its close counterpart, i.e., CDK2. The study could be helpful to rationalize the new compounds with better inhibition and selectivity profiles against CDK5/p25.  相似文献   

11.
Abstract

Cyclin-dependent kinase 2 (CDK2) is the family of Ser/Thr protein kinases that has emerged as a highly selective with low toxic cancer therapy target. A multistage virtual screening method combined by SVM, protein-ligand interaction fingerprints (PLIF) pharmacophore and docking was utilised for screening the CDK2 inhibitors. The evaluation of the validation set indicated that this method can be used to screen large chemical databases because it has a high hit-rate and enrichment factor (80.1% and 332.83 respectively). Six compounds were screened out from NCI, Enamine and Pubchem database. After molecular dynamics and binding free energy calculation, two compounds had great potential as novel CDK2 inhibitors and they also showed selective inhibition against CDK2 in the kinase activity assay.  相似文献   

12.
Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (MptpB) is an important virulence factor for Mtb that contributes to survival of the bacteria in macrophages. The absence of a human ortholog makes MptpB an attractive target for new therapeutics to treat tuberculosis. MptpB inhibitors could be an effective treatment to overcome emerging TB drug resistance. Adopting a structure-based virtual screening strategy, we successfully identified thiobarbiturate-based drug-like MptpB inhibitor 15 with an IC50 of 22.4 μM, and as a non-competitive inhibitor with a Ki of 24.7 μM. Importantly, not only did it exhibit moderate cell membrane permeability, compound 15 also displayed potent inhibition of intracellular TB growth in the macrophage, making it an excellent lead compound for anti-TB drug discovery. To the best of our knowledge, this novel thiobarbiturate is the first class of MptpB inhibitor reported so far that leveraged docking- and pharmacophore-based virtual screening approaches. The results of preliminary structure-activity relationship demonstrated that compound 15 identified herein was not a singleton and may inspire the design of novel selective and drug-like MptpB inhibitors.  相似文献   

13.
High throughput screening of the Roche compound collection led to the identification of diaminopyrroloquinazoline series as a novel class of PTP1B inhibitors. Structural modification of diaminopyrroloquinazoline series resulted in pyrido[2,3-d]pyrimidine-2,4-diamine series which was further optimized to give compounds 5 and 24 as potent, selective (except T-cell phosphatase) PTP1B inhibitors with good mouse PK properties.  相似文献   

14.
Rhus parviflora (Anacardiaceae) is an indigenous medicinal shrub found in South Asia with flavonoid rich edible fruit. This study examined flavonoid derivatives of R. parviflora fruit with CDK5/p25 inhibition activity. Evaluation by in vitro assay and docking simulations for CDK5/p25 revealed that the aurones, sulfuretin (1) and aureusidin (2), the aurone glycoside, aureusidin-6-O-β-d-glucopyranoside (3) and hovetrichoside C (4), the flavonoid glycoside, quercetin-3-O-β-d-galactopyranoside (5), and the biflavonoid, cupressuflavone (6), had the potential to inhibit CDK5/p25, which could be useful in the treatment of neurodegenerative disorders such as Alzheimer’s disease. Compound2 showed the significant in vitro inhibition capacity (IC50 value of 4.81 μM) as well as binding affinity with docking energy of ?8.73 (kcal/mol) for active sites CYS83 and GLN130 of CDK5/p25 enzyme in comparison to reference compound R-roscovitine.  相似文献   

15.
Cyclin dependent kinase 5 (CDK5) is a serine/threonine kinase belonging to the cyclin dependent kinase (CDK) family. CDK5 is involved in numerous neuronal diseases (including Alzheimer’s or Parkinson’s diseases, stroke, traumatic brain injury), pain signaling and cell migration. In the present Letter, we describe syntheses and biological evaluations of new 2,6,9-trisubstituted purines, structurally related to roscovitine, a promising CDK inhibitor currently in clinical trials (CDK1/Cyclin B, IC50 = 350 nM; CDK5/p25, IC50 = 200 nM). These new molecules were synthesized using an original Buchwald–Hartwig catalytic procedure; several compounds (3j, 3k, 3l, 3e, 4k, 6b, 6c) displayed potent kinase inhibitory potencies against CDK5 (IC50 values ranging from 17 to 50 nM) and showed significant cell death inducing activities (IC50 values ranging from 2 to 9 μM on SH-SY5Y). The docking of the inhibitors into the ATP binding domain of the CDK5 catalytic site highlighted the discriminatory effect of a hydrogen bond involving the CDK5 Lys-89. In addition, the calculated final energy balances for complexation measured for several inhibitors is consistent with the ranking of the IC50 values. Lastly, we observed that several compounds exhibit submicromolar activities against DYRK1A (dual specificity, tyrosine phosphorylation regulated kinase 1A), a kinase involved in Down syndrome and Alzheimer’s disease (3g, 3h, 4m; IC50 values ranging from 300 to 400 nM).  相似文献   

16.
Post-translational modulation of eIF4E through phosphorylation by Mnks is highly integral to the pathogenesis of different cancers. Therefore, inhibition of Mnks offers a strategy for cancer treatment. Herein, a series of 2′H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives is presented as Mnk inhibitors. Some of them showed sub-micromolar to low nanomolar inhibitory activities against Mnk1/2 with a high level of selectivity for both kinases over CDKs. Biochemical assays revealed that compounds 4c and 4t are non-ATP-competitive inhibitors of Mnks. Lead compound 4t demonstrated a high selectivity for Mnk1/2 over a selection of 51 kinases, and displayed anti-proliferative activities against a panel of cancer cell lines. However, this compound in combination with our in-house CDK4/6 inhibitor 83 did not show a synergistic effect in A2780 ovarian cancer cells, suggesting that caution be exercised in the selection of an agent to be combined with an Mnk inhibitor.  相似文献   

17.
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.  相似文献   

18.
In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a novel series of tricyclic pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amine derivatives were designed and synthesized. These compounds were characterized by IR, 1H NMR, 13C NMR, elemental and mass spectral analyses. Docking studies have given a partial insight into the molecular determinants of the activity of this novel series in VEGFR-2 kinase active site. Moreover, these compounds were assessed at 10 μM for their selective inhibitory activities over a panel of 6 human kinases, namely VEGFR-1/Flt-1, VEGFR-2/KDR, EGFR, CDK5/p25, GSK3α and GSK3β. Compound N-(4,6-dimethylthieno[2,3-b]pyridine)-7,9-dimethylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amine (9d) exhibited the most potent and selective inhibitory activity against VEGFR-2/KDR over the six human kinases, with an IC50 value 2.6 μM. The identification of this hit candidate could aid the design of new tricyclic-based VEGFR-2 kinase modulators.  相似文献   

19.
A series of novel purine-based fluoroaryl triazoles were synthesized using the Cu(I) catalyzed 1,3-dipolar cycloaddition reactions (click reactions), and assayed for their neuroprotective effects using fluorescence electron microscopy. Among these triazoles, o-fluorophenylmetyl-triazole, 7, has comparable neuroprotective effect as that of Flavopiridol (1) and Roscovitine (2), the state of the art CDK inhibitors, against the Aβ induced neurotoxicity. These results are substantiated using computer docking methods (DarwinDock/GenDock), which predict that Roscovitine and the triazole 7 bind to the ATP-binding site of CDK5/p25 with comparable binding energies, whereas the corresponding pentafluorophenylmethyl-triazole, 9, has dramatically reduced binding energy (in accordance with its lack of neuroprotection). These combined experimental and theoretical studies support the involvement of CDK5/p25 in the neuronal cell cycle re-entry.  相似文献   

20.
Fatty acid binding protein 4 (FABP4) and fatty acid binding protein 5 (FABP5) are mainly expressed in adipocytes and/or macrophages and play essential roles in energy metabolism and inflammation. When FABP4 function is diminished, FABP5 expression is highly increased possibly as a functional compensation. Dual FABP4/5 inhibitors are expected to provide beneficial synergistic effect on treating diabetes, atherosclerosis, and inflammation-related diseases. Starting from our previously reported selective FABP4 inhibitor 8, structural biology information was used to modulate the selectivity profile and to design potent dual FABP4/5 inhibitors with good selectivity against FABP3. Two compounds A16 and B8 were identified to show inhibitory activities against both FABP4/5 and good selectivity over FABP3, which could also reduce the level of forskolin-stimulated lipolysis in mature 3T3-L1 adipocytes. Compared with compound 8, these two compounds exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW264.7 murine macrophages, with decreased levels of pro-inflammatory cytokines TNFα and MCP-1 and apparently inhibited IKK/NF-κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号