首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
Cardiolipin (CL) deficiency causes mitochondrial dysfunction and aberrant metabolism that are associated in humans with the severe disease Barth syndrome (BTHS). Several metabolic abnormalities are observed in BTHS patients and model systems, including decreased oxidative phosphorylation, reduced tricarboxylic acid (TCA) cycle flux, and accumulated lactate and D-β-hydroxybutyrate, which strongly suggests that nicotinamide adenine dinucleotide (NAD) redox metabolism may be altered in CL-deficient cells. In this study, we identified abnormal NAD+ metabolism in multiple BTHS model systems and demonstrate that supplementation of NAD+ precursors such as nicotinamide mononucleotide (NMN) improves mitochondrial function. Improved mitochondrial function in the Drosophila model was associated with restored exercise endurance, which suggests a potential therapeutic benefit of NAD+ precursor supplementation in the management of BTHS patients.  相似文献   

4.
Protein secretion in yeast is generally associated with a burden to cellular metabolism. To investigate this metabolic burden in Schizosaccharomyces pombe, we constructed a set of strains secreting the model protein maltase in different amounts. We quantified the influence of protein secretion on the metabolism applying 13C-based metabolic flux analysis in chemostat cultures. Analysis of the macromolecular biomass composition revealed an increase in cellular lipid content at elevated levels of protein secretion and we observed altered metabolic fluxes in the pentose phosphate pathway, the TCA cycle, and around the pyruvate node including mitochondrial NADPH supply. Supplementing acetate to glucose or glycerol minimal media was found to improve protein secretion, accompanied by an increased cellular lipid content and carbon flux through the TCA cycle as well as increased mitochondrial NADPH production. Thus, systematic metabolic analyses can assist in identifying factors limiting protein secretion and in deriving strategies to overcome these limitations.  相似文献   

5.
Liver mitochondria undergo dynamic alterations following chronic alcohol feeding to mice. Intragastric alcohol feeding to mice resulted in 1) increased state III respiration (109% compared with control) in isolated liver mitochondria, probably due to increased levels of complexes I, IV, and V being incorporated into the respiratory chain; 2) increased mitochondrial NAD+ and NADH levels (∼2-fold), with no change in the redox status; 3) alteration in mitochondrial morphology, with increased numbers of elongated mitochondria; and 4) enhanced mitochondrial biogenesis in the liver, which corresponded with an up-regulation of PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α). Oral alcohol feeding to mice, which is associated with less liver injury and steatosis, slightly enhanced respiration in isolated liver mitochondria (30.8% compared with control), lower than the striking increase caused by intragastric alcohol feeding. Mitochondrial respiration increased with both oral and intragastric alcohol feeding despite extensive N-acetylation of mitochondrial proteins. The alcohol-induced mitochondrial alterations are probably an adaptive response to enhance alcohol metabolism in the liver. Isolated liver mitochondria from alcohol-treated mice had a greater rate of acetaldehyde metabolism and respiration when treated with acetaldehyde than control. Aldehyde dehydrogenase-2 levels were unaltered in response to alcohol, suggesting that the greater acetaldehyde metabolism by isolated mitochondria from alcohol-treated mice was due to increased mitochondrial respiration that regenerated NAD+, the rate-limiting substrate in alcohol/acetaldehyde metabolism. Overall, our work suggests that mitochondrial plasticity in the liver may be an important adaptive response to the metabolic stress caused by alcohol intake and could potentially play a role in many other vital functions performed by the liver.  相似文献   

6.
Metabolic flexibility is the capacity for the organism to adapt fuel oxidation to fuel availability. The inability to modify fuel oxidation in response to changes in nutrient availability has been implicated in the accumulation of intramyocellular lipid and insulin resistance. The metabolic flexibility assessed by the ability to switch from fat to carbohydrate oxidation is usually impaired during a hyperinsulinemic clamp in insulin-resistant subjects; however, this "metabolic inflexibility" is mostly the consequence of impaired cellular glucose uptake. Indeed, after controlling for insulin-stimulated glucose disposal rate (amount of glucose available for oxidation), metabolic flexibility is not altered in obesity regardless of the presence of type 2 diabetes. To understand how intramyocellular lipids accumulate and cause insulin resistance, the assessment of metabolic flexibility to high-fat diets is more relevant than metabolic flexibility during a hyperinsulinemic clamp. An impaired capacity to upregulate muscle lipid oxidation in the face of high lipid supply may lead to increased muscle fat accumulation and insulin resistance. Surprisingly, very few studies have investigated the response to high-fat diets. In this review, we discuss the role of glucose disposal rate, adipose tissue lipid storage, and mitochondrial function on metabolic flexibility. Additionally, we emphasize the bias of using the change in respiratory quotient to calculate metabolic flexibility and propose novel approaches to assess metabolic flexibility. On the basis of current evidence, one cannot conclude that impaired metabolic flexibility is responsible for the accumulation of intramyocellular lipid and insulin resistance. We propose to study metabolic flexibility in response to high-fat diets in individuals having contrasting degree of insulin sensitivity and/or mitochondrial characteristics.  相似文献   

7.
In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain (Antimycin A), the ATP synthase (oligomycin) or respiratory uncoupling (2,4-dinitrophenol). Direct inhibition of the electron transport chain or the ATP synthase was followed by increased glucose uptake and lactate production, reduced glycogen synthesis, reduced lipid and glucose oxidation and unchanged lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se and insulin resistance. Taken together functional mitochondrial impairment could be part of the pathophysiology of insulin resistance in vivo.  相似文献   

8.
9.
Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.  相似文献   

10.
Glutathione is a tripeptide important in a number of diverse cellular functions including enzymatic reactions involved in prostaglandin endoperoxide metabolism. We have previously reported that cyclophosphamide administration to rats results in acute lung injury manifested by increased bronchoalveolar lavage albumin concentrations. In the current study we examine whether cyclophosphamide treatment affects pulmonary glutathione stores or bronchoalveolar endoperoxide metabolic product levels and whether these effects may be related to acute lung injury caused by the drug. We show that cyclophosphamide treatment causes a dose-dependent reduction in pulmonary glutathione stores 4 h after drug administration. In addition, acute lung injury as the result of cyclophosphamide can be abrogated by coadministration of oxothiazolidine carboxylate, an intracellular cysteine delivery system that also reverses pulmonary glutathione depletion induced by cyclophosphamide in our study. Finally, cyclophosphamide treatment reduces prostaglandin E2 concentrations in bronchoalveolar lavage and alveolar macrophage culture supernatant in a dose-dependent fashion and increases bronchoalveolar thromboxane concentrations in low dose-treated animals. These effects are reversed to a variable degree by coadministration of oxothiazolidine carboxylate. Our study suggests in vivo pulmonary arachidonic acid metabolism and cyclophosphamide-induced acute lung injury are modulated by cellular glutathione stores. These findings may have important implications for the treatment of acute lung injury.  相似文献   

11.
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSD s) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSD s (n  = 7), compared to controls (n  = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n  = 5) (vs. control, n  = 5) by high‐throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSD s. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSD s. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases.

Cover Image for this Issue: doi: 10.1111/jnc.14177 .
  相似文献   

12.
Alcohol use disorders (AUDs), including alcohol abuse and dependence, have been linked to the development of acute lung injury (ALI). Prior clinical investigations suggested an association between AUDs and abnormal alveolar epithelial permeability mediated through pulmonary oxidative stress that may partially explain this relationship. We sought to determine if correcting pulmonary oxidative stress in the setting of AUDs would normalize alveolar epithelial permeability in a double-blinded, randomized, placebo-controlled trial of Protandim, a nutraceutical reported to enhance antioxidant activity. We randomized 30 otherwise healthy AUD subjects to receive directly observed inpatient oral therapy with either Protandim (1,350 mg/day) or placebo. Subjects underwent bronchoalveolar lavage (BAL) and blood sampling before study drug administration and after 7 days of therapy; all AUD subjects completed the study protocol without adverse events. BAL total protein was measured at each timepoint as an indicator of alveolar epithelial permeability. In subjects with AUDs, before study drug initiation, BAL total protein values were not significantly higher than in 11 concurrently enrolled controls (P = 0.07). Over the 7-day study period, AUD subjects did not exhibit a significant change in BAL total protein, regardless of their randomization to Protandim {n = 14, -2% [intraquartile range (IQR), -56-146%]} or to placebo [n = 16, 77% (IQR -20-290%); P = 0.19]. Additionally, among those with AUDs, no significant changes in BAL oxidative stress indexes, epithelial growth factor, fibroblast growth factor, interleukin-1β, or interleukin-10 were observed regardless of drug type received. Plasma thiobarbituric acid reactive substances, a marker of lipid peroxidation, decreased significantly over time among AUD subjects randomized to placebo (P < 0.01). These results suggest that Protandim for 7 days in individuals with AUDs who are newly abstinent does not alter alveolar epithelial permeability. However, our work demonstrates the feasibility of safely conducting clinical trials that include serial bronchoscopies in a vulnerable population at risk for acute lung injury.  相似文献   

13.

Background

A decline in body insulin sensitivity in apparently healthy individuals indicates a high risk to develop type 2 diabetes. Investigating the metabolic fingerprints of individuals with different whole body insulin sensitivity according to the formula of Matsuda, et al. (ISIMatsuda) by a non-targeted metabolomics approach we aimed a) to figure out an unsuspicious and altered metabolic pattern, b) to estimate a threshold related to these changes based on the ISI, and c) to identify the metabolic pathways responsible for the discrimination of the two patterns.

Methodology and Principal Findings

By applying infusion ion cyclotron resonance Fourier transform mass spectrometry, we analyzed plasma of 46 non-diabetic subjects exhibiting high to low insulin sensitivities. The orthogonal partial least square model revealed a cluster of 28 individuals with alterations in their metabolic fingerprints associated with a decline in insulin sensitivity. This group could be separated from 18 subjects with an unsuspicious metabolite pattern. The orthogonal signal correction score scatter plot suggests a threshold of an ISIMatsuda of 15 for the discrimination of these two groups. Of note, a potential subgroup represented by eight individuals (ISIMatsuda value between 8.5 and 15) was identified in different models. This subgroup may indicate a metabolic transition state, since it is already located within the cluster of individuals with declined insulin sensitivity but the metabolic fingerprints still show some similarities with unaffected individuals (ISI >15). Moreover, the highest number of metabolite intensity differences between unsuspicious and altered metabolic fingerprints was detected in lipid metabolic pathways (arachidonic acid metabolism, metabolism of essential fatty acids and biosynthesis of unsaturated fatty acids), steroid hormone biosyntheses and bile acid metabolism, based on data evaluation using the metabolic annotation interface MassTRIX.

Conclusions

Our results suggest that altered metabolite patterns that reflect changes in insulin sensitivity respectively the ISIMatsuda are dominated by lipid-related pathways. Furthermore, a metabolic transition state reflected by heterogeneous metabolite fingerprints may precede severe alterations of metabolism. Our findings offer future prospects for novel insights in the pathogenesis of the pre-diabetic phase.  相似文献   

14.
High altitude pulmonary edema (HAPE) is experienced by non-acclimatized sea level individuals on exposure to high altitude hypoxic conditions. Available evidence suggests that genetic factors and perturbed mitochondrial redox status may play an important role in HAPE pathophysiology. However, the precise mechanism has not been fully understood. In the present study, sequencing of mitochondrial DNA (mtDNA) from HAPE subjects and acclimatized controls was performed to identify pathogenic mutations and to determine their role in HAPE. Hypobaric hypoxia induced oxidative stress and metabolic alterations were also assessed in HAPE subjects. mtDNA copy number, mitochondrial oxidative phosphorylation (mtOXPHOS) activity, mitochondrial biogenesis were measured to determine mitochondrial functions. The data revealed that the mutations in Complex I genes affects the secondary structure of protein in HAPE subjects. Further, increased oxidative stress during hypobaric hypoxia, reduced mitochondrial biogenesis and mtOXPHOS activity induced metabolic reprogramming appears to contribute to mitochondrial dysfunctions in HAPE individuals. Haplogroup analysis suggests that mtDNA haplogroup H2a2a1 has potential contribution in the pathobiology of HAPE in lowlanders. This study also suggests contribution of altered mitochondrial functions in HAPE susceptibility.  相似文献   

15.
16.
17.
Cell differentiation is associated with changes in metabolism and function. Understanding these changes during differentiation is important in the context of stem cell research, cancer, and neurodegenerative diseases. An early event in neurodegenerative diseases is the alteration of mitochondrial function and increased oxidative stress. Studies using both undifferentiated and differentiated SH-SY5Y neuroblastoma cells have shown distinct responses to cellular stressors; however, the mechanisms remain unclear. We hypothesized that because the regulation of glycolysis and oxidative phosphorylation is modulated during cellular differentiation, this would change bioenergetic function and the response to oxidative stress. To test this, we used retinoic acid (RA) to induce differentiation of SH-SY5Y cells and assessed changes in cellular bioenergetics using extracellular flux analysis. After exposure to RA, the SH-SY5Y cells had an increased mitochondrial membrane potential, without changing mitochondrial number. Differentiated cells exhibited greater stimulation of mitochondrial respiration with uncoupling and an increased bioenergetic reserve capacity. The increased reserve capacity in the differentiated cells was suppressed by the inhibitor of glycolysis 2-deoxy-d-glucose. Furthermore, we found that differentiated cells were substantially more resistant to cytotoxicity and mitochondrial dysfunction induced by the reactive lipid species 4-hydroxynonenal or the reactive oxygen species generator 2,3-dimethoxy-1,4-naphthoquinone. We then analyzed the levels of selected mitochondrial proteins and found an increase in complex IV subunits, which we propose contributes to the increase in reserve capacity in the differentiated cells. Furthermore, we found an increase in MnSOD that could, at least in part, account for the increased resistance to oxidative stress. Our findings suggest that profound changes in mitochondrial metabolism and antioxidant defenses occur upon differentiation of neuroblastoma cells to a neuron-like phenotype.  相似文献   

18.
The toxicity and carcinogenicity of formaldehyde (HCHO) has been attributed to its ability to form adducts with DNA and proteins. A marked decrease in mitochondrial membrane potential and inhibition of mitochondrial respiration that was accompanied by reactive oxygen species formation occurred when isolated rat hepatocytes were incubated with low concentrations of HCHO in a dose-dependent manner. Hepatocyte GSH was also depleted by HCHO in a dose-dependent manner. At higher HCHO concentrations, lipid peroxidation ensued followed by cell death. Cytotoxicity studies were conducted in which isolated hepatocytes exposed to HCHO were treated with inhibitors of HCHO metabolising enzymes. There was a marked increase in HCHO cytotoxicity when either alcohol dehydrogenase or aldehyde dehydrogenase was inhibited. Inhibition of GSH-dependent HCHO dehydrogenase activity by prior depletion of GSH markedly increased hepatocyte susceptibility to HCHO. In each case, cytotoxicity was dose-dependent and corresponded with a decrease in hepatocyte HCHO metabolism and increased lipid peroxidation. Antioxidants and iron chelators protected against HCHO cytotoxicity. Cytotoxicity was also prevented, when cyclosporine or carnitine was added to prevent the opening of the mitochondrial permeability transition pore which further suggests that HCHO targets the mitochondria. Thus, HCHO-metabolising gene polymorphisms would be expected to have toxicological consequences on an individual's susceptibility to HCHO toxicity and carcinogenesis.  相似文献   

19.
The toxicity and carcinogenicity of formaldehyde (HCHO) has been attributed to its ability to form adducts with DNA and proteins. A marked decrease in mitochondrial membrane potential and inhibition of mitochondrial respiration that was accompanied by reactive oxygen species formation occurred when isolated rat hepatocytes were incubated with low concentrations of HCHO in a dose-dependent manner. Hepatocyte GSH was also depleted by HCHO in a dose-dependent manner. At higher HCHO concentrations, lipid peroxidation ensued followed by cell death. Cytotoxicity studies were conducted in which isolated hepatocytes exposed to HCHO were treated with inhibitors of HCHO metabolising enzymes. There was a marked increase in HCHO cytotoxicity when either alcohol dehydrogenase or aldehyde dehydrogenase was inhibited. Inhibition of GSH-dependent HCHO dehydrogenase activity by prior depletion of GSH markedly increased hepatocyte susceptibility to HCHO. In each case, cytotoxicity was dose-dependent and corresponded with a decrease in hepatocyte HCHO metabolism and increased lipid peroxidation. Antioxidants and iron chelators protected against HCHO cytotoxicity. Cytotoxicity was also prevented, when cyclosporine or carnitine was added to prevent the opening of the mitochondrial permeability transition pore which further suggests that HCHO targets the mitochondria. Thus, HCHO-metabolising gene polymorphisms would be expected to have toxicological consequences on an individual's susceptibility to HCHO toxicity and carcinogenesis.  相似文献   

20.
In response to exercise, the heart increases its metabolic rate severalfold while maintaining energy species (e.g., ATP, ADP, and Pi) concentrations constant; however, the mechanisms that regulate this response are unclear. Limited experimental studies show that the classic regulatory species NADH and NAD+ are also maintained nearly constant with increased cardiac power generation, but current measurements lump the cytosol and mitochondria and do not provide dynamic information during the early phase of the transition from low to high work states. In the present study, we modified our previously published computational model of cardiac metabolism by incorporating parallel activation of ATP hydrolysis, glycolysis, mitochondrial dehydrogenases, the electron transport chain, and oxidative phosphorylation, and simulated the metabolic responses of the heart to an abrupt increase in energy expenditure. Model simulations showed that myocardial oxygen consumption, pyruvate oxidation, fatty acids oxidation, and ATP generation were all increased with increased energy expenditure, whereas ATP and ADP remained constant. Both cytosolic and mitochondrial NADH/NAD+ increased during the first minutes (by 40% and 20%, respectively) and returned to the resting values by 10-15 min. Furthermore, model simulations showed that an altered substrate selection, induced by either elevated arterial lactate or diabetic conditions, affected cytosolic NADH/NAD+ but had minimal effects on the mitochondrial NADH/NAD+, myocardial oxygen consumption, or ATP production. In conclusion, these results support the concept of parallel activation of metabolic processes generating reducing equivalents during an abrupt increase in cardiac energy expenditure and suggest there is a transient increase in the mitochondrial NADH/NAD+ ratio that is independent of substrate supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号