首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, novel chromenones linked to 1,2,3-triazole ring system were synthesized and evaluated for their anti-ChE activity. Among them, N-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-5-yl)methyl)-8-methoxy-2-oxo-2H-chromene-3-carboxamide (6m) showed good anti-acetylcholinesterase activity (IC50 = 15.42 μM). Also, compound 6m demonstrated neuroprotective effect against H2O2-induced cell death in PC12 neurons, however, it showed no beta-secretase (BACE1) inhibitory activity. Docking and kinetic studies separately confirmed dual binding activity of compound 6m since it targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.  相似文献   

2.
The changes in antioxidant enzyme activity during the induction of adventitious roots in mung bean seedlings treated with Indole-3-butyric acid (IBA), hydrogen peroxide (H2O2), ascorbic acid (ASA) and diphenylene iodonium (DPI) were investigated. As compared with the controls, treatments of seedlings with 10 μM IBA significantly decreased POD activity by 55% and 49.6% at 3 h and 12 h of incubation, respectively, and significantly increased by 49.8% at 36 h of incubation; treatments of seedlings with 10 mM H2O2 significantly decreased POD activity by 42%, 60%, 39% and 38% at 3 h, 12 h, 24 h and 48 h of incubation, respectively, the changes in POD activity were coincident with those in IBA-treated seedlings during the 0–12 h incubation period; treatments of seedlings with 2 mM ASA significantly decreased APX activities by 27% only at 3 h of incubation, the varying trend of POD activity was similar to incubation with water; 10 μM DPI treatments significantly decreased POD activity by 42%, 40%, 54% and 28% at 3 h, 6 h, 12 h and 48 h of treatment, respectively. CAT activities remained at relatively stable levels and no major changes occurred from 0 h to 48 h during the incubation phase of adventitious rooting. The results may imply that CAT, an H2O2-metabolizing enzyme, is inactivated by H2O2 during the formation of adventitious roots. As compared with the controls, IBA treatments significantly decreased APX activities by 48%, 53% and 66% at 3 h, 9 h and 12 h of treatment, respectively; H2O2 treatments significantly decreased APX activities by 59%, 51% and 57% at 3 h, 12 h and 36 h of incubation, respectively; ASA treatments significantly decreased APX activities by 37% only at 3 h of incubation; DPI treatments significantly decreased APX activities by 54%, 53% and 63% at 3 h, 6 h and 12 h of incubation, respectively, and significantly increased APX activity by 106% at 24 h. These results indicated that the influence of IBA, H2O2, ASA and DPI on the changes in APX activity were the same as on the changes in POD activity. Furthermore, similar trends in the changes of APX activity and POD activity were observed during the induction and initiation rooting phase. This finding implies that APX and POD serve the same functions, possibly related to the level of H2O2, during the formation of adventitious roots. The early decrease of POD and APX activities in the initiation phase of IBA- and H2O2-treated seedlings may be one mechanism underlying the IBA- and H2O2-mediated facilitation of adventitious rooting.  相似文献   

3.
To explore novel effective drugs for the treatment of Alzheimer’s disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and β-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC50 = 0.567 μM; AChE: IC50 = 1.83 μM), and also showed excellent inhibitory effects on Aβ production of APP transfected HEK293 cells (IC50 = 98.7 nM) and mild protective effect against hydrogen peroxide (H2O2)-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Aβ1–40 production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.  相似文献   

4.
《Process Biochemistry》2007,42(2):235-243
This paper aims to investigate the effect of H2O2 and paraquat on the activities of superoxide dismutase (SOD) and catalase (CAT), and membrane lipid peroxidation (LPO) levels in newly isolated Streptomyces sp. M3004. SOD activities of Streptomyces sp. M3004, grown in 10 mM and 30 mM H2O2, were significantly lower than the control cultures. On the other hand, as an antioxidant enzyme, CAT activity in both H2O2 treatment conditions increased significantly compared with the control. These activity values in 10 mM and 30 mM H2O2 treatment on the 48th hour of incubation were 3.8- and 6.6-fold higher than the control, respectively. SOD activity decreased significantly with respect to paraquat concentration, which was added at the start of the incubation. CAT activities increased significantly in 1.0 mM and 3.0 mM paraquat treatments compared to control. As an indicative marker of membrane damage, LPO levels of the novel isolate Streptomyces sp. M3004 treated with H2O2, and paraquat stress conditions were significantly higher than the control. Nevertheless, compared with the 30 mM H2O2 in both treatment conditions, LPO levels in 10 mM H2O2 were significantly higher. The decreases in SOD activities in paraquat and H2O2 treatment conditions resulted in the increases in the LPO levels although it increases in CAT activities.  相似文献   

5.
6.
BackgroundHorseradish peroxidase (HRP) catalyzes H2O2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H2O2-induced inactivation, have been investigated.MethodsHRP reaction with H2O2 was studied by following H2O2 depletion, O2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow.ResultsNitroxide protects HRP against H2O2-induced inactivation. The rate of H2O2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H2O2. The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO) > 4-OH-TPO > 3-carbamoyl proxyl > 4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III.ConclusionsNitroxide catalytically protects HRP against inactivation induced by H2O2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex.General SignificanceNitroxides catalytically protect heme proteins against inactivation induced by H2O2 revealing an additional role played by nitroxide antioxidants in vivo.  相似文献   

7.
A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 2738 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50 = 0.048 μM: 34; 0.036 μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50 = 9.2 μM: 34; max% inhibition 80.9%, IC50 = 10.11 μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future.  相似文献   

8.
Alzheimer’s disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04 ± 0.01 μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06 ± 0.02 μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.  相似文献   

9.
A series of novel hybrids has been synthesized by linking coumarin moiety through an appropriate spacer to various substituted heterocyclic amines and evaluated as dual binding site acetylcholinesterase inhibitors for the treatment of cognitive dysfunction caused by increased hydrolysis of acetylcholine and scopolamine induced oxidative stress. Anti-amnesic activity of the compounds was evaluated using Morris water maze model at a dose of 1 mg/kg with reference to the standard, donepezil. Biochemical estimation of oxidative stress markers (lipid peroxidation, superoxide dismutase, and plasma nitrite) was carried out to assess the antioxidant potential of the synthesized molecules. Among all the synthesized compounds (15ai, 16ad, 17ab), compound 15a [4-[3-(4-phenylpiperazin-1-yl)propoxy]-2H-chromen-2-one] displayed significant antiamnesic activity, AChE inhibitory activity (IC50 = 2.42 μM) and antioxidant activity in comparison to donepezil (IC50 = 1.82 μM). Molecular docking study of 15a indicated that it interacts with all the crucial amino acids present at the CAS, mid-gorge and PAS of TcAChE resulting in increased inhibition of AChE enzyme.  相似文献   

10.
《Plant science》2005,169(5):833-841
Roots of mountain ginseng (Panax ginseng) were exposed to various levels of oxygen (O2) (30, 40 and 50%) for 15, 30 and 45 days in 5 L (working volume 4 L) airlift bioreactors. Ginsenoside accumulation and dry weight was enhanced up to 40% O2; but thereafter declined ginsenoside and dry weight of the roots by increasing level of O2. Gradual increase in H2O2 content and lipoxygenase activity (LOX), resulting in cellular damage and oxidative stress as indicated by increased malondialdehyde (MDA) content after 30 and 45 days at all O2 levels was shown. Increased levels of O2 (above ambient) resulted in increases in non-protein thiol (NP-SH) and cysteine content. Higher activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), catalase (CAT), guaiacol peroxidase (G-POD), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S transferase (GST) activities indicated that antioxidant enzymes played an important role in protecting the roots from O2 up to 45 days, except at 50% O2 where GR, GST and GPx decreased compared to the control. However, after 45 days, SOD activity decreased significantly compared to the control in the O2-treated roots. This reflects the sensitivity of enzymes to O2 toxicity. In stress related experiment, roots showed increased synthesis of ginsenosides when 25 and 50 μM H2O2 was applied. However, higher dose and increasing treatment inhibited ginsenoside synthesis. The results indicate that plant roots could grow and protect themselves from O2 stress by coordinated induction of various antioxidant enzymes and metabolite contents. These results suggest that O2 supplementation is useful for ginsenoside accumulation using 5-L bioreactors.  相似文献   

11.
Acacia species are multipurpose trees, widely used in the traditional systems of medicine to treat various ailments. The major objective of the present study was to determine the gene expression of enzymatic antioxidants by acetone extract from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) in hydrogen peroxide (H2O2)-induced human hepatoma (HepG2) cells. The expression of antioxidant enzymes such as superoxide dismutase containing copper–zinc (CuZnSOD)/manganese (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) in HepG2 cells was evaluated by real-time PCR. The results of antioxidant enzyme expression in real-time PCR study revealed that the H2O2 (200 μM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells pre-treated with acetone extracts of all the three Acacia species significantly (P > 0.05) up-regulated the expression of antioxidant enzymes in a concentration dependent manner (25, 50 and 75 μg/mL). In conclusion, the findings of our study demonstrated that the acetone extract of Acacia species effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.  相似文献   

12.
A novel series of coumarin derivatives were designed, synthesized and investigated for inhibition of cholinesterase, including acetyl cholinesterase (AChE) and butyrylcholinesterase (BuChE). This biological study showed that these compounds containing piperazine ring had significant inhibition activities on AChE rather than BuChE. Further study suggested that 9x, as one of this kind of structure derivative, showed the strongest inhibition activity on AChE with an IC50 value of 34 nM. Moreover, molecular docking, flow cytometry (FCM), and western blot assay suggested that 9x could induce cytoprotective autophagy to attenuate H2O2-induced cell death in human neuroblastoma SH-SY5Y cells. These findings highlight a new approach for the development of a novel potential neuroprotective compound targeting AChE with autophagy-inducing activity in future Alzheimer’s disease (AD) therapy.  相似文献   

13.
14.
Cytochrome c was immobilized covalently onto nickel oxide nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline composite (NiO-NPs/cMWCNT/PANI) electrodeposited on gold (Au) electrode. An amperometric H2O2 biosensor was constructed by connecting this modified Au electrode along Ag/AgCl as reference and Pt wire as counter electrode to the galvanostat. The modified Au electrode was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR). Cyclic voltammetric (CV) studies of the electrode at different stages demonstrated that the modified Au electrode had enhanced electrochemical oxidation of H2O2, which offered a number of attractive features to develop an amperometric biosensor based on split of H2O2. There was a good linear relationship between the current (mA) and H2O2 concentration in the range 3–700 μM. The sensor had a detection limit of 0.2 μM (S/N = 3) with a high sensitivity of 3.3 mA μM?1 cm?2. The sensor gave accurate and satisfactory results, when employed for determination of H2O2 in different fruit juices.  相似文献   

15.
Mitochondrial reactive oxygen species regulate many important biological processes. We studied H2O2 formation by nonsynaptic brain mitochondria in response to the addition of low concentrations of glutamate, an excitatory neurotransmitter. We demonstrated that glutamate at concentrations from 10 to 50 μM stimulated the H2O2 generation in mitochondria up to 4-fold, in a dose-dependent manner. The effect of glutamate was observed only in the presence of Ca2+ (20 μM) in the incubation medium, and the rate of calcium uptake by the brain mitochondria was increased by up to 50% by glutamate. Glutamate-dependent effects were sensitive to the NMDA receptor inhibitors MK-801 (10 μM) and D-AP5 (20 μM) and the inhibitory neurotransmitter glycine (5 mM). We have shown that the H2O2 formation caused by glutamate is associated with complex II and is dependent on the mitochondrial potential. We have found that nonsynaptic brain mitochondria are a target of direct glutamate signaling, which can specifically activate H2O2 formation through mitochondrial respiratory chain complex II. The H2O2 formation induced by glutamate can be blocked by glycine, an inhibitory neurotransmitter that prevents the deleterious effects of glutamate in brain mitochondria.  相似文献   

16.
A novel series of acridine-chromenone and quinoline-chromenone hybrids were designed, synthesized, and evaluated as anti-Alzheimer’s agents. All synthesized compounds were evaluated as cholinesterases (ChEs) inhibitors and among them, 7-(4-(6-chloro-2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)phenoxy)-4-methyl-2H-chromen-2-one (8e) exhibited the most potent anti-acetylcholinesterase (AChE) inhibitory activity (IC50 = 16.17 μM) comparing with rivastigmine (IC50 = 11.07 μM) as the reference drug. Also, compound 8e was assessed for its β-secretase (BACE1) inhibitory and neuroprotective activities which demonstrated satisfactory results. It should be noted that both kinetic study on the inhibition of AChE and molecular modeling revealed that compound 8e interacted simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE.  相似文献   

17.
To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line “HJ16” was developed by gradual adaptation of parental “J16” cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3 mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1 mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1 mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced cellular response to oxidant-mediated glutathione depletion, FtH modulation, and labile iron release and a significant increase in FtMt levels following H2O2 treatment.  相似文献   

18.
Clinical applications of acetylcholinesterase (AChE) inhibitors are widespread in Alzheimer’s sufferers in order to activate central cholinergic system and alleviate cognitive deficits by inhibiting the hydrolysis of acetylcholine. In this study, six kinds of chitooligosaccharides (COSs) with different molecular weight and degree of deacetylation were examined for their inhibitory effects against AChE. The 90-COSs exhibited potent AChE inhibitory activities compared to 50-COSs, while 90-MMWCOS (1000–5000 Da) in the 90-COSs showed the highest activity. Cell culture experiment revealed that 90-MMWCOS suppressed the level of AChE protein expression and AChE activity induced by Aβ25–35 in PC12 cell lines.  相似文献   

19.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

20.
The aim of this work was to study the antioxidant activity and the protective effect of 2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC), the main compound from the buds of Cleistocalyx operculatus, on human umbilical vein endothelial cells against cytotoxicity induced by H2O2. The antioxidant activities of DMC were measured by ABTS assay, ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging activity, and protective effects of DMC on human umbilical vein endothelial cells against cytotoxicity induced by H2O2 were tested. DMC was found to have high ABTS radical scavenging activity (176.5 ± 5.2 μmol trolox equivalents/500 μmol DMC) and strong ferric reducing antioxidant power (213.3 ± 5.8 μmol trolox equivalents/500 μmol DMC). In addition, DMC scavenged the hydroxyl radicals, with IC50 values of 243.7 ± 6.3 μM, slightly lower than the reference antioxidant ascorbic acid (ASC). Moreover, DMC could protect the human umbilical vein endothelial cells against H2O2-induced cytotoxicity by decrease intracellular and extracellular ROS levels, reduction in catalase (CAT) activity and increment in malondialdehyde (MDA) level. These results suggested that DMC has the potential to be used in the therapy of oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号