首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four types of resveratrol dimerized analogues were synthesized and evaluated in vitro on LPS-induced NO production in RAW 264.7 cells. The results showed that several compounds, especially those containing 1,2-diphenyl-2,3-dihydro-1H-indene core (type I), exhibited good inhibitory activities. Among 25 analogues, 12b showed a significant inhibitory activity (49% NO production at 10 μM, IC50 = 3.38 μM). Further study revealed that compound 12b could suppress LPS-induced iNOS expression, NO production, and IL-1β release in a concentration-dependently manner. The mechanism of action (MOA) involved for its anti-inflammatory responses was through signaling pathways of p38 MAPK and JNK1/2, but not ERK1/2.  相似文献   

2.
A new group of hybrid nitric oxide (NO) releasing anti-inflammatory (AI) coxib prodrugs (NO-coxibs) wherein the para-tolyl moiety present in celecoxib was replaced by a N-(4-nitrooxybutyl)piperidyl 15ab, or N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl 17ab, NO-donor moiety was synthesized. All compounds released a low amount of NO upon incubation with phosphate buffered saline (PBS) at pH 7.4 (2.4–5.8% range). In comparison, the percentage NO released was higher (3.1–8.4% range) when these nitrate prodrugs were incubated in the presence of l-cysteine. In vitro COX-1/COX-2 isozyme inhibition studies showed this group of compounds are moderately more potent, and hence selective, inhibitors of the COX-2 relative to the COX-1 enzyme. AI structure–activity relationship data acquired showed that compounds having a MeSO2 COX-2 pharmacophore exhibited superior AI activity compared to analogs having a H2NSO2 substituent. Compounds having a MeSO2 COX-2 pharmacophore in conjunction with a N-(4-nitrooxybutyl)piperidyl (ED50 = 132.4 mg/kg po), or a N-(4-nitrooxybutyl)-1,2,3,6-tetrahydropyridyl (ED50 = 118.4 mg/kg po), moiety exhibited an AI potency profile that is similar to aspirin (ED50 = 128.7 mg/kg po) but lower than ibuprofen (ED50 = 67.4 mg/kg po).  相似文献   

3.
Two new compounds, euphorbinoside (1) and dehydropicrorhiza acid methyl diester (2), along with 24 known compounds (326) were isolated from Euphorbia humifusa Willd. The effects of these compounds on soluble epoxide hydrolase (sEH) inhibitory activity were evaluated. Flavonoid compounds (1021) exhibited high sEH inhibitory activity. Among them, compounds 12, 13, and 19 greatly inhibited sEH enzymatic activity, with IC50 values as low as 18.05 ± 1.17, 18.64 ± 1.83, and 17.23 ± 0.84 μM, respectively. In addition, the effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) and tumor necrosis factor alpha (TNF-α) production by RAW 264.7 cells were investigated. Compounds 36, 8, 18, 2023, and 2526 inhibited the production of both NO and TNF-α, with IC50 values ranging from 11.1 ± 0.9 to 45.3 ± 1.6 μM and 14.4 ± 0.5 to 44.5 ± 1.2 μM, respectively.  相似文献   

4.
In searching for naturally occurring anti-inflammatory agents, three new abietane-type diterpenoids, named 16-hydroxylambertic acid (1), 7-oxo-18-hydroxyferruginol (2), and 5α,12-dihydroxy-6-oxa-abieta-8,11,13-trien-7-one (3), were isolated from the seeds of Podocarpus nagi, together with three known compounds. The structures of the new compounds were elucidated by extensive analysis of NMR and HR-ESIMS data. All the new compounds were tested for nitric oxide (NO) inhibitory activities on lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 1 significantly inhibited NO production with IC50 value of 5.38 ± 0.17 μM, and suppressed inducible NO synthase (iNOS) expression in a dose-dependent manner, which were mediated through inhibiting the mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) activation.  相似文献   

5.
Nine rotenoids were isolated from the hexane and dichloromethane extracts of Derris trifoliata stems and were tested for nitric oxide (NO) inhibitory activity using RAW264.7 cells. The result indicated that 12a-hydroxyrotenone (7) possessed very potent NO inhibitory activity with an IC50 value of 0.002 μM, followed by 1 (deguelin, IC50=0.008 μM), 9 (12a-hydroxyelliptone, IC50=0.010 μM) and 2 (α-toxicarol, IC50=0.013 μM), respectively. In addition, the DPPH scavenging activity of rotenoids was also investigated. It was found that 6a,12a-dehydrodeguelin (5) possessed the highest activity against DPPH with an IC50 value of 7.4 μM, followed by deguelin (1, IC50=27.4 μM). All compounds did not show any cytotoxicity at their IC50 values for NO inhibitory activity.Structure–activity relationships (SARs) of these rotenoids against NO release are as follows: (1) hydroxylation at C12a dramatically increased activity, (2) prenylation at furan ring increased activity markedly and (3) hydrogenation of a double bond at C6a–C12a conferred higher activity. For the DPPH radical scavenging effect, it was found that (1) introduction of a double bond at C6a–C12a increased activity and (2) hydroxylation of C11 at the D-ring decreased activity. As regards active compounds of Derris trifoliata stems, the isolated compounds are responsible for the NO inhibitory effect, especially 7, 1, 9 and 2, whereas 5 and 1 are those for the DPPH scavenging activity.  相似文献   

6.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs) wherein an O2-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (13ab), or O2-acetoxymethyl-1-(2-methylpyrrolidin-1-yl)diazen-1-ium-1,2-diolate (16ab), NO-donor moiety was covalently coupled to the COOH group of 5-(4-carboxymethylphenyl)-1-(4-methane(amino)sulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (11ab) was synthesized. The percentage of NO released from these diazen-1-ium-1,2-diolates was significantly higher (59.6–74.6% of the theoretical maximal release of 2 molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum, relative to incubation with phosphate buffer (PBS) at pH 7.4 (5.0–7.2% range). These incubation studies suggest that both NO and the AI compound would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. All compounds were weak inhibitors of the COX-1 isozyme (IC50 = 8.1–65.2 μM range) and modest inhibitors of the COX-2 isozyme (IC50 = 0.9–4.6 μM range). The most potent parent aminosulfonyl compound 11b exhibited AI activity that was about sixfold greater than that for aspirin and threefold greater than that for ibuprofen. The ester prodrugs 13b, 16b exhibited similar AI activity to that exhibited by the more potent parent acid 11b when the same oral μmol/kg dose was administered. These studies indicate hybrid ester AI/NO donor prodrugs of this type (NONO-coxibs) constitute a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

7.
A series of analogues of the non-steroidal anti-inflammatory drug (NSAID) sulindac 1 were synthesised tethered to nitric oxide (NO) donating functional groups. Sulindac shows antiproliterative effects against immortal PC3 cell lines. It was previously demonstrated that the effect can be enhanced when tethered to NO releasing groups such as nitrate esters, furoxans and sydnonimines. To explore this approach further, a total of fifty-six sulindac–NO analogues were prepared and they were evaluated as NO-releasing cytotoxic agents against prostate cancer (PCa) cell lines. Compounds 1k and 1n exhibited significant cytotoxic with IC50 values of 6.1 ± 4.1 and 12.1 ± 3.2 μM, respectively, coupled with observed nitric oxide release.  相似文献   

8.
Two new pyranoflavonoids, morustralins A (1) and B (2), a new natural benzene derivative, one benzenoid (Z)-1-hydroxy-4-(2-nitroethenyl)benzene (3), and thirty known compounds were isolated and characterized from the root bark of Morus australis. The structures of the new compounds were established from spectroscopic and spectrometric analyses. Ten isolates (110) were examined for inhibitory effects on adenosine diphosphate (ADP)-, arachidonic acid (AA)-, and platelet-aggregating factor (PAF)-induced platelet aggregation. Among the tested compounds, compound 3 displayed the most significant inhibition of ADP- and AA-induced platelet aggregation with IC50 values of 9.76 ± 5.54 and 9.81 ± 2.7 μM, respectively. In addition, eight purified compounds (310) were examined for inhibition of nitric oxide (NO) production in RAW 264.7 cells and six compounds (38) displayed significant inhibitory effects with IC50 values ranging from 2.1 ± 0.3 to 6.3 ± 0.6 μM.  相似文献   

9.
Hyperpolarization enhances the intensity of the NMR signals of a molecule, whose in vivo metabolic fate can be monitored by MRI with higher sensitivity. SABRE is a hyperpolarization technique that could potentially be used to image nitric oxide (NO) production in vivo. This would be very important, because NO dysregulation is involved in several pathologies, including cardiovascular ones. The nitric oxide synthase (NOS) pathway leads to NO production via conversion of l-arginine into l-citrulline. NO is a free radical gas with a short half-life in vivo (≈5 s), therefore direct NO quantification is challenging. An indirect method – based on quantifying conversion of an l-Arg- to l-Cit-derivative by 1H NMR spectroscopy – is herein proposed. A small library of pyridyl containing l-Arg derivatives was designed and synthesised. In vitro tests showed that compounds 4aj and 11ac were better or equivalent substrates for the eNOS enzyme (NO2? production = 19–46 μM) than native l-Arg (NO2? production = 25 μM). Enzymatic conversion of l-Arg to l-Cit derivatives could be monitored by 1H NMR. The maximum hyperpolarization achieved by SABRE reached 870-fold NMR signal enhancement, which opens up exciting future perspectives of using these molecules as hyperpolarized MRI tracers in vivo.  相似文献   

10.
11.
Fifteen novel hybrids containing diterpene skeleton and nitric oxide (NO) donor were prepared from isosteviol. All the compounds were tested on preliminary cytotoxicity, and the results showed that six target compounds (8c, 10b, 14a, 14c, 18c, and 18d) exhibited anti-proliferation activity on HepG2 cells, with 8c (IC50 = 4.24 μM) and 18d (IC50 = 2.75 μM) superior to the positive control CDDO-Me (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-acid methyl ester, IC50 = 4.99 μM); eleven target compounds (8ac, 9ac, 10ab, 14a, 14c, 18d) exhibited anti-proliferation activities on B16F10 cells at different levels, among them, seven compounds were more potent than comptothecin (IC50 = 2.78 μM) and CDDO-Me (IC50 = 5.85 μM), particularly, 10b (IC50 = 0.02 μM) presented the strongest effect, which was selected as a candidate for further study.  相似文献   

12.
《Inorganica chimica acta》2006,359(7):2285-2290
Stopped-flow kinetic measurements were used to compare the reactivities of [Ru(medtra)(H2O)] (medtra3− = N-methylethylenediaminetriacetate) (1) and [Ru(hedtra)(H2O)] (2) (hedtra3− = N-hydroxyethylethylenediaminetriacetate) with NO in aqueous solution at 15 °C, pH 7.2 (phosphate buffer). The measured second-order rate constants (3 × 103 and 6 × 104 M−1 s−1 for 1 and 2, respectively) are three to four order of magnitudes lower than that for the reaction between [RuIII(edta)(H2O)] (3) with NO. However, NO scavenging studies of complexes 13, conducted by measuring the difference in nitrite production between treated and untreated murine macrophage cells, revealed that despite being less kinetically reactive toward NO, the [Ru(medtra)(H2O)] complex exhibited the highest NO scavenging ability and lowest toxicity of compounds 13.  相似文献   

13.
Using various chromatographic separation techniques, ten flavonoid glycosides, including six new compounds namely barringosides A?F (16), were isolated from a methanol extract of the Barringtonia acutangula leaves. The structure elucidation was confirmed by spectroscopic analyses, including 1D and 2D NMR, and HR ESI MS. Their inhibitory effects on LPS-induced NO production in RAW264.7 cells were also evaluated. Among the isolated compounds, quercetin 3-O-β-d-(6-p-hydroxybenzoyl)galactopyranoside (9) showed significant effect with an IC50 of 20.00 ± 1.68 µM. This is the first report of these flavonoid glycosides from Barringtonia genus and their inhibition on LPS-induced NO production in RAW264.7 cells was reported here for the first time.  相似文献   

14.
Phytochemical investigation of Disporum cantoniense has resulted in the isolation of two new compounds, namely (3S,4S,5S)-5-C-(4-hydroxy-3-methoxybenzyl)-γ-lactone-2-deoxy-pentonic acid(1) and (3R,4S,5R)-5-C-(4-hydroxy-3-methoxybenzyl) -γ-lactone-2-deoxy-pentonic acid(2). Their structures were elucidated by various spectroscopic techniques. The absolute configurations of compounds were determined by ECD calculations analysis. Compound 1 showed significant inhibition of nitric oxide (NO) release in LPS-induced RAW264.7 macrophages with the IC50 value of 6.43 ± 0.68 μM, comparable to that of positive control amino guanidine (9.14 ± 0.62 μM). Herein we report the isolation, structure elucidation, as well as the evaluation of the anti-inflammatory activities of these two compounds.  相似文献   

15.
Developing efficient controlled release system of insecticide can facilitate the better use of insecticide. We described here a first example of photo-controlled release of an insecticide by linking fipronil with photoresponsive coumarin covalently. The generated coumarin-fipronil (CF) precursor could undergo cleavage to release free fipronil in the presence of blue light (420 nm) or sunlight. Photophysical studies of CF showed that it exhibited strong fluorescence properties. The CF had no obvious activity against mosquito larvae under dark, but it can be activated by light inside the mosquito larvae. The released Fip from CF by blue light irradiation in vitro retained its activity to armyworm (Mythimna separate) with LC50 value of 24.64 μmol L?1. This photocaged molecule provided an alternative delivery method for fipronil.  相似文献   

16.
A series of nitric oxide (NO) donating derivatives of hederacolchiside A1 bearing triterpenoid saponin motif were designed, synthesized and evaluated for their anticancer activity. All of the tested furoxan-based NO releasing compounds showed significant proliferation inhibitory activities. Especially compound 6a exhibited strong cytotoxicity (IC50 = 1.6–6.5 μM) against four human tumor cell lines (SMMC-7721, NCI-H460, U251, HCT-116) in vitro and the highest level of NO releasing. Furthermore, compound 6a was revealed low acute toxicity to mice and weak haemolytic activity with potent tumor growth inhibition against mice H22 hepatocellular cells in vivo (51.5%).  相似文献   

17.
Five new phenolic glycosides, tenuisides A–E (1?5), and a new megastigmane glycoside, tenuiside F (6), along with seventeen known compounds (7–23) were isolated from the aerial parts of Polygala tenuifolia Willd. Their structures were established by detailed analysis of NMR and HRESIMS spectroscopic data, and the absolute configurations of compounds 5 and 6 were determined by CD spectra and in-NMR-tube Mosher’s method. The inhibitory effects of these compounds were evaluated on NO production in LPS-activated BV-2 microglia cells. Compound 17 showed the strongest activity, with an IC50 value of 7.4 μM, while compounds 1, 8, 14, and 18 showed the moderate activities, with IC50 values of 16.2–38.5 μM. And their primary structure–activity relationships (SARs) of NO inhibitory effects were also briefly discussed.  相似文献   

18.
A series of novel 4-substituted benzoxazolone derivatives was synthesized, characterized and evaluated as human soluble epoxide hydrolase (sEH) inhibitors and anti-inflammatory agents. Some compounds showed moderate sEH inhibitory activities in vitro, and two novel compounds, 3g and 4j, exhibited the highest activities with IC50 values of 1.72 and 1.07 μM, respectively. Structure–activity relationships (SARs) revealed that introduction of a lipophilic amino acid resulted in an obvious increase in the sEH inhibitory activity, especially for derivatives containing a phenyl (3d, IC50 = 2.67 μM), pyrrolidine (3g, IC50 = 1.72 μM), or sulfhydryl group (3e, IC50 = 3.02 μM). Several compounds (3a3g) were tested in vivo using a xylene-induced ear edema mouse model. Three compounds (3d, 3f, and 3g) showed strong anti-inflammatory activities in vivo which were higher than that of Chlorzoxazone, a reference drug widely used in the clinic. Our investigation provided a novel type of sEH inhibitor and anti-inflammatory agent that may lead to the discovery of a potential candidate for clinical use.  相似文献   

19.
A series of heterocyclic derivatives including indoles, pyrazines along with oximes and esters were synthesized from lupeol and evaluated for anti-inflammatory activity through inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW 264.7 and J774A.1 cells. All the synthesized molecules of lupeol were found to be more active in inhibiting NO production with an IC50 of 18.4–48.7 μM in both the cell lines when compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively). The halogen substitution at phenyl ring of indole moiety leads to potent inhibition of NO production with half maximal concentration ranging from 18.4 to 41.7 μM. Furthermore, alkyl (11, 12) and p-bromo/iodo (15, 16) substituted compounds at a concentration of 20 μg/mL exhibited mild inhibition (29–42%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (10–22%) towards interleukin 1-beta (IL-1β) production in both the cell lines. All the derivatives were found to be non-cytotoxic when tested at their IC50 (μM). These findings suggest that the derivatives of lupeol could be a lead to potent inhibitors of NO.  相似文献   

20.
Chemical investigation of a marine-derived fungus Penicillium sp. SF-6013 resulted in the discovery of a new tanzawaic acid derivative, 2E,4Z-tanzawaic acid D (1), together with four known analogues, tanzawaic acids A (2) and D (3), a salt form of tanzawaic acid E (4), and tanzawaic acid B (5). Their structures were mainly determined by analysis of NMR and MS data, along with chemical methods. Preliminary screening for anti-inflammatory effects in lipopolysaccharide (LPS)-activated microglial BV-2 cells showed that compounds 1, 2, and 5 inhibited the production of nitric oxide (NO) with IC50 values of 37.8, 7.1, and 42.5 μM, respectively. Compound 2 also inhibited NO production in LPS-stimulated RAW264.7 murine macrophages with an IC50 value of 27.0 μM. Moreover, these inhibitory effects correlated with the suppressive effect of compound 2 on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 and BV2 cells. In addition, compounds 2 and 5 significantly inhibited the activity of protein tyrosine phosphatase 1B (PTP1B) with the same IC50 value (8.2 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号