首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel series of 7-aminoalkyl-substituted flavonoid derivatives 5a5r were designed, synthesized and evaluated as potential cholinesterase inhibitors. The results showed that most of the synthesized compounds exhibited potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities at the micromolar range. Compound 2-(naphthalen-1-yl)-7-(8-(pyrrolidin-1-yl)octyloxy)-4H-chromen-4-one (5q) showed the best inhibitory activity (IC50, 0.64 μM for AChE and 0.42 μM for BChE) which were better than our previously reported compounds and the commercially available cholinergic agent Rivastigmine. The results from a Lineweaver–Burk plot indicated a mixed-type inhibition for compound 5q with AChE and BChE. Furthermore, molecular modeling study showed that 5q targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Besides, these compounds (5a5r) did not affect PC12 and HepG2 cell viability at the concentration of 10 μM. Consequently, these flavonoid derivatives should be further investigated as multipotent agents for the treatment of Alzheimer’s disease.  相似文献   

2.
A series of novel hybrids has been synthesized by linking coumarin moiety through an appropriate spacer to various substituted heterocyclic amines and evaluated as dual binding site acetylcholinesterase inhibitors for the treatment of cognitive dysfunction caused by increased hydrolysis of acetylcholine and scopolamine induced oxidative stress. Anti-amnesic activity of the compounds was evaluated using Morris water maze model at a dose of 1 mg/kg with reference to the standard, donepezil. Biochemical estimation of oxidative stress markers (lipid peroxidation, superoxide dismutase, and plasma nitrite) was carried out to assess the antioxidant potential of the synthesized molecules. Among all the synthesized compounds (15ai, 16ad, 17ab), compound 15a [4-[3-(4-phenylpiperazin-1-yl)propoxy]-2H-chromen-2-one] displayed significant antiamnesic activity, AChE inhibitory activity (IC50 = 2.42 μM) and antioxidant activity in comparison to donepezil (IC50 = 1.82 μM). Molecular docking study of 15a indicated that it interacts with all the crucial amino acids present at the CAS, mid-gorge and PAS of TcAChE resulting in increased inhibition of AChE enzyme.  相似文献   

3.
A novel series of acridine-chromenone and quinoline-chromenone hybrids were designed, synthesized, and evaluated as anti-Alzheimer’s agents. All synthesized compounds were evaluated as cholinesterases (ChEs) inhibitors and among them, 7-(4-(6-chloro-2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)phenoxy)-4-methyl-2H-chromen-2-one (8e) exhibited the most potent anti-acetylcholinesterase (AChE) inhibitory activity (IC50 = 16.17 μM) comparing with rivastigmine (IC50 = 11.07 μM) as the reference drug. Also, compound 8e was assessed for its β-secretase (BACE1) inhibitory and neuroprotective activities which demonstrated satisfactory results. It should be noted that both kinetic study on the inhibition of AChE and molecular modeling revealed that compound 8e interacted simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE.  相似文献   

4.
In present investigation, a series of substituted phenyl-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-2-indenylmethanone analogues were synthesized and were tested for their potential for treating AD disease. All the newly synthesized compounds were showing moderate to high AChE inhibitory activities, with compound 5,6-dimethoxy-1-oxo-2,3-dihydro-1H-2-indenyl-3,4,5-trimethoxyphenylmethanone (5f) produced significant activities with 2.7 ± 0.01 μmol/L.  相似文献   

5.
A series of 4,5-diaryl-1H-imidazole-2(3H)-thione was synthesized and their inhibitory potency against soybean 15-lipoxygenase and free radical scavenging activities were determined. Compound 11 showed the best IC50 for 15-LOX inhibition (IC50 = 4.7 μM) and free radical scavenging activity (IC50 = 14 μM). Methylation of SH at C2 position of imidazole has dramatically decreased the 15-LOX inhibition and radical scavenging activity as it can be observed in the inactive compound 14 (IC50 >250 μM). Structure activity similarity (SAS) showed that the most important chemical modification in this series was methylation of SH group and Docking studies revealed a proper orientation for SH group towards Fe core of the 15-LOX active site. Therefore it was concluded that iron chelating could be a possible mechanism for enzyme inhibition in this series of compounds.  相似文献   

6.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

7.
New molecular hybrids combining benzothiophene or its bioisostere benzofuran with rhodanine were synthesized as potential dual COX-2/5-LOX inhibitors. The benzothiophene or benzofuran scaffold was linked at position -2 with rhodanine which was further linked to various anti-inflammatory pharmacophores so as to investigate the effect of such molecular variation on the anti-inflammatory activity. The target compounds were evaluated for their in vitro COX/LOX inhibitory activity. The results revealed that, compound 5h exhibited significant COX-2 inhibition higher than celecoxib. Furthermore, compounds 5a, 5f and 5i showed COX-2 inhibitory activity comparable to celecoxib. Compound 5h showed selectivity index SI = 5.1 which was near to that of celecoxib (SI = 6.7). Compound 5h displayed LOX inhibitory activity twice than that of meclofenamate sodium. Moreover, compounds 5a, 5e and 5f showed significant LOX inhibitory activity higher than that of meclofenamate sodium. Compound 5h was screened for its in vivo anti-inflammatory activity using formalin-induced paw edema and gastric ulcerogenic activity tests. The results revealed that, it showed in vivo decrease in formalin-induced paw edema volume higher than celecoxib. It also displayed gastrointestinal safety profile as celecoxib. The biological results were also consistent with the docking studies at the active sites of the target enzymes COX-2 and 5-LOX. Also, compound 5h showed physicochemical, ADMET, and drug-like properties within those considered adequate for a drug candidate.  相似文献   

8.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

9.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions.  相似文献   

10.
Two series of novel acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors containing benzimidazole core structure were synthesized by a four-step reaction pathway starting from 4-fluoro-3-nitrobenzoic acid as the basic compound. The structure of the novel benzimidazoles was characterized and confirmed by the elemental and mass spectral analyses as well as 1H NMR spectroscopic data. Of the 34 novel synthesized compounds, three benzimidazoles revealed AChE inhibition with IC50 < 10 μM. The highest inhibitory activity (IC50 = 5.12 μM for AChE and IC50 = 8.63 μM for BChE) corresponds to the compound 5IIc (ethyl 1-(3-(1H-imidazol-1-yl)propyl)-2-(4-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate). The relationship between lipophilicity and the chemical structures as well as their limited structure–activity relationship was discussed.  相似文献   

11.
This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer’s disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25 ± 0.12 μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6 ± 0.2 μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2 ± 0.3 μM), AChE (IC50 50.2 ± 0.8 μM) and BChE (IC50 43.8 ± 0.8 μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets.  相似文献   

12.
Alzheimer’s disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04 ± 0.01 μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06 ± 0.02 μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.  相似文献   

13.
Eight dimethylaminomethyl-substituted curcumin derivatives were designed and synthesized. The antioxidant test revealed that the synthesized compounds had higher free radical scavenging activity towards both 2,2-diphenyl-1-picrylhydrazyl free radicals (DPPH) (IC50 1.5–29.9 μM) and galvinoxyl radicals (IC50 4.9–41.1 μM) than the lead compound curcumin. Besides, compound 3a could effectively inhibit the Aβ self-aggregation in vitro. Investigated in phosphate-buffered solutions (pH = 7.4) in the presence or absence of 0.1% FBS 3a showed a good stability while curcumin did not. Furthermore, 3a showed a good lipophilicity (log P = 3.48), suggesting a potential ability to penetrate the blood–brain-barrier. The aqueous solubility of the hydrochloride salt of 3a (16.7 mg/mL) has also been significantly improved as compared with curcumin (<0.1 mg/mL).  相似文献   

14.
A novel class of indomethacin analogs were synthesized wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety (5-LOX pharmacophore) was attached at its C-4 or C-5 position via either a CO (14ab) or CH2 (19ab) linker to the indole N1-position. In this regard, replacement of the 4-chlorobenzoyl group present in indomethacin by N-difluoromethyl-1,2-dihydropyrid-2-one-4-(or 5-)carbonyl and N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl(or 5-yl)methylene moieties furnished compounds showing no inhibitory activities against the COX-2/5-LOX enzymes (except for the weak but selective COX-2 inhibitor 19a, COX-2 IC50 = 31 μM), and moderate in vivo anti-inflammatory activities (except for the methylene compound 19a that was inactive). These structure–activity data indicate replacement of the 4-chlorobenzoyl group present in indomethacin by a N-difluoromethyl-1,2-dihydropyrid-2-one ring system connected by a CO or CH2 linker is not a suitable approach for the design of dual COX-2/5-LOX inhibitory analogs of indomethacin.  相似文献   

15.
A series of 2-(6-methylpyridin-2-yl)-1H-imidazoles were synthesized and evaluated for ALK5 inhibitory activity in cell-based luciferase reporter assays. The compound 4-(((1-(benzo[d][1,3]dioxol-5-yl)-2-(6-methylpyridin-2-yl)-1H-imidazol-4-yl)methyl)amino)benzenesulfonamide (27a) exhibited slightly higher inhibition (IC50 = 0.24 μM) than SB431542 (IC50 = 0.35 μM), a well known potent ALK5 inhibitor. The binding mode of 27a generated by flexible docking study shows that it fits well into the site cavity of ALK5 by forming several tight interactions.  相似文献   

16.
Based upon the structures of some known 5-LOX inhibitors, a set of five compounds carrying appropriate substituents at N-1 and C-3 of indole were synthesized and investigated for 5-LOX inhibitory activities. Fifty percent inhibitory concn (IC50) of these compounds ranges from 0.6 to 5 μM and found to be comparable to that of clinically used 5-LOX inhibitor, zileuton. The compounds under present investigations exhibited appreciable interactions with 5-LOX as apparent from their association constants calculated from the mass spectral data. Compound 5a with a tosyl group at N-1 and pyrolidinyl-1,2-dione substituent at C-3 of indole, exhibiting IC50 0.6 μM and stoichiometry of 1:7 in the enzyme–compound complex was identified as highly potent 5-LOX inhibitor and seems to be suitable for further investigations.  相似文献   

17.
In the present study, we used crystal structure of mycobacterial pantothenate synthetase (PS) bound with 2-(2-(benzofuran-2-ylsulfonylcarbamoyl)-5-methoxy-1H-indol-1-yl) acetic acid inhibitor for virtual screening of antitubercular compound database to identify new scaffolds. One of the identified lead was modified synthetically to obtain thirty novel analogues. These synthesized compounds were evaluated for Mycobacterium tuberculosis (MTB) PS inhibition study, in vitro antimycobacterial activities and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, N′-(1-naphthoyl)-2-methylimidazo[1,2-a]pyridine-3-carbohydrazide (5b) was found to be the most active compound with IC50 of 1.90 ± 0.12 μM against MTB PS, MIC of 4.53 μM against MTB with no cytotoxicity at 50 μM. The binding affinity of the most potent inhibitor 5b was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

18.
Four derivatives of schisandrin, a major dibenzo[a,c]cyclooctadiene lignan of Schisandra chinensis (Turcz.) Baillon were synthesized and structurally characterized by means of NMR and mass spectroscopy. Furthermore, axial chirality of the biphenyl system was determined by comparison of calculated with measured circular dichroism (CD) spectra. Three of the obtained derivatives showed a ring contraction during chemical modification. While the original lignans were inactive on the performed bioassays, the compounds which showed the cycloheptadiene skeleton revealed remarkable activities. For the inhibition of LTB4 production the IC50 values of aR-6,7-dihydro-6-(1′-hydroxyethyl)-3,9-dimethoxy-6-methyl-5H-dibenzo[a,c]cycloheptene-1,2,10,11-tetraol (6) and aR-6-(1′-iodoethyl)-1,2,3,9,10,11-hexamethoxy-6-methyl-5H-dibenzo[a,c]cycloheptene (8) were 4.2 ± 0.3 μM and 4.5 ± 0.2 μM, respectively. aR-6,7-Dihydro-6-(1′-hydroxyethyl)-6-methyl-5H-dibenzo[a,c]cycloheptene-1,2,3,9,10,11-hexaol (5) revealed dual inhibition on COX-2 (IC50 32.1 ± 2.5 μM) and on LTB4 production (37.3 ± 5.5% inhibition at 50 μM).  相似文献   

19.
A series of 6-nitro-3-(m-tolylamino) benzo[d]isothiazole 1,1-dioxide analogues were synthesized and evaluated for their inhibition activity against 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES-1). These compounds can inhibit both enzymes with IC50 values ranging from 0.15 to 23.6 μM. One of the most potential compounds, 3g, inhibits 5-LOX and mPGES-1 with IC50 values of 0.6 μM, 2.1 μM, respectively.  相似文献   

20.
A series of novel 2-(4-(4-substituted piperazin-1-yl)benzylidene)-1H-indene-1,3(2H)-diones were designed, synthesized and appraised as multifunctional anti-Alzheimer agents. In vitro studies of compounds 2738 showed that these compounds exhibit moderate to excellent AChE, BuChE and Aβ aggregation inhibitory activity. Notably, compounds 34 and 38 appeared as most active multifunctional agents in the entire series and exhibited excellent inhibition against AChE (IC50 = 0.048 μM: 34; 0.036 μM: 38), Aβ aggregation (max% inhibition 82.2%, IC50 = 9.2 μM: 34; max% inhibition 80.9%, IC50 = 10.11 μM: 38) and displayed significant antioxidant potential in ORAC-FL assay. Both compounds also successfully diminished H2O2 induced oxidative stress in SH-SY5Y cells. Fascinatingly, compounds 34 and 38 showed admirable neuroprotective effects against H2O2 and Aβ induced toxicity in SH-SY5Y cells. Additionally, both derivatives showed no considerable toxicity in neuronal cell viability assay and represented drug likeness properties in the primarily pharmacokinetics study. All these results together, propelled out that compounds 34 and 38 might serve as promising multi-functional lead candidates for treatment of AD in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号