首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron (Fe) is crucial for cellular proliferation, and Fe chelators have shown activity at preventing the growth of the malarial parasite in cell culture and in animal and human studies. We investigated the anti-malarial activity of novel aroylhydrazone and thiosemicarbazone Fe chelators that show high activity at inhibiting the growth of tumour cells in cell culture [Blood 100 (2002) 666]. Experiments with the chelators were performed using the chloroquine-sensitive, 3D7, and chloroquine-resistant, 7G8, strains of Plasmodium falciparum in vitro. The new ligands were significantly more active in both strains than the Fe chelator in widespread clinical use, desferrioxamine (DFO). The most effective chelators examined were 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone and 2-hydroxy-1-naphthylaldehyde-4-phenyl-3-thiosemicarbazone. The anti-malarial activity correlates with anti-proliferative activity against neoplastic cells demonstrated in a previous study. Our studies suggest that this class of lipophilic chelators may have potential as useful agents for the treatment of malaria.  相似文献   

2.
Pseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn2+, Cu2+, Co2+, Ni2+ and Mn2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn2+ and Ni2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pKa-value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pKa values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity.  相似文献   

3.
Summary Pseudotripeptide ligands with 4 different N-functionalized glycine residues were qualitatively, semiquantitatively and quantitatively tested for their complexation of the bivalent transition metal ions Zn2+, Cu2+, Co2+, Ni2+ and Mn2+. The functional side chains have different length and different groups available for complexation. MALDI-MS and ESI-MS were used for more qualitative or semiquantitative estimation of the complex formation tendencies. The found ranking differs by these two methods only for Zn2+ and Ni2+. For one of the pseudotripeptide ligands, the ligand L1, complex formation with certain transition metal was estimated quantitatively by potentiometric titration. The Zn-complex of that ligand polarizes bound water strongly, resulting in a low pK a -value. Complexes of pseudotripeptide ligand L1 with certain metal ions were tested for their hydrolytic activity. The pseudo first order rate constants of the hydrolysis of the substrates 4-nitrophenyl acetate and bis(4-nitrophenyl)phosphate were compared to complexes with the same metal ions formed with a very well studied ligand from the literature, the 1,4,7,10-tetraaza cyclododecane (cyclen). The hydrolysis of the phosphate ester occurs very slowly compared to the acetate ester. No correlation exists between the estimated pK a values of complexes formed from ligand L1 with different metal ions and the phosphate ester hydrolysis. The Ni ions give totally different hydrolytic activities for pseudotripeptide ligand L1 and cyclen. With one exception, the Ni-cyclen complex, all other complexes have only a low or moderate catalytic activity. Dedicated to Professor Dr. Ernst-Gottfried Jaeger on occasion of his 65th birthday.  相似文献   

4.
The increased use of copper radioisotopes in radiopharmaceutical applications has created a need for bifunctional chelators (BFCs) that form stable radiocopper complexes and allow covalent attachment to biological molecules. Previous studies have established that 4,11-bis-(carbo- tert-butoxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (H 2CB-TE2A), a member of the ethylene "cross-bridged" cyclam (CB-cyclam) class of bicyclic tetraaza macrocycles, forms highly kinetically stable complexes with Cu(II) and is less susceptible to in vivo transchelation than its nonbridged analogue, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA). Herein, we report a convenient synthesis of a novel cross-bridged BFC that is structurally analogous to CB-TE2A in that it possesses two coordinating acetate arms, but in addition possesses a third orthogonally protected arm for conjugation to peptides and other targeting agents. Application of this strategy to cross-bridged chelators may also enable the development of even further improved agents for (64)Cu-mediated diagnostic positron emission tomography (PET) imaging as well as for targeted radiotherapeutic applications.  相似文献   

5.
We report here the synthesis, characterization and kinetic studies of cis-[RuCl2(cyclen)]+ in aqueous solution, where cyclen is the macrocyclic ligand 1,4,7,10-tetraazacyclododecane. The complex releases one Cl producing cis-[RuCl(OH)(cyclen)]+ in aqueous solution at pH 4.60. The product of this reaction was characterized by Ultraviolet-Visible (UV-Vis) spectrum in comparison to the synthesized cis-[RuCl(OH)(cyclen)](BF4)·2H2O. The electrochemical data showed that Epc of the Ru(III/II) peak increases as the macrocycle ring size decreases and also when the trans conformation is changed to cis. The chloride affinity of Ru(III) depends on the macrocycle ring size since cis-[RuCl2(cyclam)]+ (cyclam=1,4,8,11-tetraazacyclotetradecane) does not release chloride for at least 12 h. The overall effect between cyclam and cyclen reflects the fact that the electron involved in the reduction enters a nonbonding π-d orbital and its energy is affected by the macrocyclic ligand.  相似文献   

6.
A series of acylhydrazones of salicylaldehyde and their transition metal complexes, predominantly copper(II), have been prepared and characterized. The crystal structure of the Cu(II) complex of the sterically hindered t-butyl derivative contains a phenolato bridged dimer with the ligand coordinated as a tridentate moiety. QSAR analyses of the cytotoxicity of the chelators and their Cu(II) complexes reveals that solubility is the dominant factor for activity. Compounds display a maximum with respect to lipophilicity, allowing optimization of the bioactivity for both the ligands and their complexes. Copper complexes are significantly more cytotoxic than the metal-free ligands and complexes of other metals: Cu > Ni > Zn = Mn > Fe = Cr > Cr > Co.  相似文献   

7.
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.  相似文献   

8.
A 1,4-disubstituted dibenzofuran derivative of 1,4,7,10-tetraazacyclododecane (cyclen), L1, has been prepared by the direct reaction of cyclen and chloroacetyldibenzofuran and the mono-substituted derivative, L2, by reaction of chloroacetyldibenzofuran and 1,4,7-tris(t-butoxycarbonyl)-1,4,7,10-tetraazacyclododecane followed by deprotection with trifluoroacetic acid. The ligands were characterized by 1H and 13C NMR spectroscopy, IR spectroscopy and mass spectrometry. The reaction of the 1,4-disubstituted dibenzofuran cyclen, L1, with Cu(ClO4)2·6H2O in methanol yielded crystals of [CuL1](ClO4)2·MeOH·1/2H2O that were suitable for single crystal structural analysis. The X-ray structure confirmed that the 1,4-disubstituted dibenzofuran cyclen had been formed. The copper(II) coordination sphere in the complex cation, [CuL1]2+, is occupied by four nitrogen atoms from the macrocycle and an amide oxygen donor from one dibenzofuran pendant group. As is typical for copper(II)-cyclen complexes, the Cu(II) centre sits above the plane of the macrocycle nitrogen towards the oxygen donor, in this case by 0.5 Å. Fluorescence emission studies indicate that coordination of the macrocycle to either copper(II) or zinc(II) results in a decrease in emission with respect to the emission of the pure ligand.  相似文献   

9.
The tetrahedral zinc and cobalt complexes [(TpPh,Me)ZnOH] (TpPh,Me = hydrotris(3,5-phenylmethylpyrazolyl)borate) and [(TpPh,Me)CoCl] were combined with 3-hydroxy-2H-pyran-2-one (3,2-pyrone), 3-hydroxy-4H-pyran-4-one (3,4-pyrone), and tropolone to form the corresponding [(TpPh,Me)M(L)] complexes (L = bidentate ligand, M = Zn2+, Co2+). X-ray crystal structures of these complexes were obtained to determine the mode of binding for each chelator and the coordination geometry of each complex. The complexes [(TpPh,Me)M(3,2-pyrone)] (M = Zn2+, Co2+) are the first structurally characterized metal complexes with this chelator. These complexes with the various chelators show that the cobalt(II) complexes are generally isostructural with their zinc(II) counterparts. In addition to structural characterization, inhibition data for each ligand against two different zinc(II) metalloproteins, matrix metalloproteinase-3 (MMP-3) and anthrax lethal factor (LF), were obtained. Examination of these chelators in the MMP-3 active site demonstrates the possible mode of inhibition.  相似文献   

10.
Azadipeptide nitriles—novel cysteine protease inhibitors—display structure-dependent antimalarial activity against both chloroquine-sensitive and chloroquine-resistant lines of cultured Plasmodium falciparum malaria parasites. Inhibition of parasite’s hemoglobin-degrading cysteine proteases was also investigated, revealing the azadipeptide nitriles as potent inhibitors of falcipain-2 and -3. A correlation between the cysteine protease-inhibiting activity and the antimalarial potential of the compounds was observed. These first generation azadipeptide nitriles represent a promising new class of compounds for antimalarial drug development.  相似文献   

11.
We report the synthesis of the hydrazone ligands, 1-(phenyl-hydrazono)-propan-2-one (PHP), 1-(p-tolyl-hydrazono)-propan-2-one (THP), 1-[(4-chloro-hydrazono)]-propan-2-one (CHP), and their Ni(II) and Cu(II) metal complexes. The structure of the ligands and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, UV, and EPR) measurements. IR spectra indicate that the free ligands exist in the hydrazo-ketone rather than azo-enol form in the solid state. Also, the hydrazo-NH exists as hydrogen bonded to the keto-oxygen either as intra or as intermolecular hydrogen bonding. In all the studied complexes, all ligands behave as a neutral bidentate ligands with coordination involving the hydrazone-nitrogen and the keto-oxygen atoms. The magnetic and spectral data indicate a square planar geometry for Cu2+ complexes and an octahedral geometry for Ni2+ complexes. The ligands and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. They were found to be more active against Gram-positive than Gram-negative bacteria. It may be concluded that the antimicrobial activity of the compounds is related to cell wall structure of bacteria.Protonation constant of (PHP) ligand and stability constants of its Cu2+ and Ni2+ complexes were determined by potentiometric titration method in aqueous solution at ionic strength of 0.1 M sodium nitrate. It has been observed that the hydrazone ligand (PHP) titrated here has one protonation constant. The divalent metal ions Cu2+ and Ni2+ form with (PHP) 1:1 and 1:2 complexes. The insolubility of (THP) and (CHP) ligands in aqueous medium does not permit the determination of their protonation constants and formation constants of the corresponding complexes in aqueous solution.  相似文献   

12.
A series of new 9-substituted acridyl derivatives were synthesized and their in vitro antimalarial activity was evaluated against one chloroquine-sensitive strain (3D7) and three chloroquine-resistant strains [W2 (Indochina), Bre1 (Brazil) and FCR3 (Gambia)] of Plasmodium falciparum. Some compounds inhibit the growth of malarial parasite with IC50 相似文献   

13.
Ethylene cross-bridged cyclam with two acetate pendant arms, ECB-TE2A, is known to form the most kinetically stable (64)Cu complexes. However, its usefulness as a bifunctional chelator is limited because of its harsh radiolabeling conditions. Herein, we report new cross-bridged cyclam chelator for the development of ultrastable (64)Cu-radiolabeled bioconjugates. Propylene cross-bridged TE2A (PCB-TE2A) was successfully synthesized in an efficient way. The Cu(II) complex of PCB-TE2A exhibited much higher kinetic stability than ECB-TE2A in acid decomplexation studies, and also showed high resistance to reduction-mediated demetalation. Furthermore, the quantitative radiolabeling of PCB-TE2A with (64)Cu was achieved under milder conditions compared to ECB-TE2A. Biodistribution studies strongly indicate that the (64)Cu complexes of PCB-TE2A cleared out rapidly from the body with minimum decomplexation.  相似文献   

14.
Artemisinin, an anti-malarial drug isolated from the annual wormwood Artemisia annua L., has a marked activity against chloroquine-resistant and chloroquine-sensitive strains of Plasmodium falciparum, and is useful in treatment of cerebral malaria. Shoot cultures of Artemisia annua L. were established on Murashige and Skoog basal medium which contained (per litre) 30 g sucrose, 0.5 mg 6-benzyladenine and 0.05 mg naphthaleneacetic acid. Using an optimized combination of sucrose (30 g/l), nitrate (45 mM), inorganic phosphate (200 mg/l), gibberellic acid (7 mg/l) and the ratio of NH4 +-N to NO3 -N of 1:3, artemisinin production reached 26.7 mg/l after 30 days. This procedure provides a potential alternative for production of artemisinin from in vitro tissue cultures.  相似文献   

15.
Inclusion compound of a macrocyclic cavitand cucurbit[8]uril (C48H48N32O16, CB[8]) with a square-planar palladium(II) complex of a polyamine ligand cyclam, {[Pd(cyclam)]@CB[8]}Cl2·16?H2O (1), was synthesized and characterized by X-ray crystallography, elemental analysis, IR, and electrospray ionization (ESI) mass spectrometry. The complex [Pd(cyclam)]2+ undergoes chemical oxidation within the CB[8] cavity leading to the formation of the palladium(IV) inclusion compound {trans-[Pd(cyclam)Cl2]@CB[8]}Cl2·14H2O (2). The Pd(II) and Pd(IV) complexes are completely encapsulated within the CB[8] cavity. The cyclam ring in 1 and 2 adopts the most stable configuration (trans-III (S,S,R,R)).  相似文献   

16.
Herein, we report synthesis, characterization, antimicrobial and antimalarial activities of azines Schiff base ligands (L1−L4) and their palladium (II) complexes ( C1−C4 ) of [Pd(L)(OAc)2] type. The azine ligands (L1−L4) were prepared by condensation of carbonyl compounds with hydrazine hydrate and their complexes by the reaction of palladium acetate with L1−L4 ligands in 1 : 1 molar ratio. The prepared ligands and their complexes were characterized by spectral characterization using 1H &13C-NMR, FT-IR and mass spectral studies, which revealed that the ligands coordinates via azomethine nitrogen and heteroatom or aryl carbon with palladium. Moreover, Schiff bases and their palladium (II) complexes have been screened for their antibacterial (S. aureus, B. subtillis, and S. typhi, P. aeruginosa), antifungal (C. albicans, A. niger, and A. clavatus) and antimalarial (P. falciparum) activities. The Schiff base L4 showed good results for antibacterial against S. aureus (MIC, 50 μg/mL) and antimalarial against P. falciparum (IC50, 0.83 μg/mL). The complex C1 showed best antibacterial activity (MIC, 62.5 μg/mL) against S. typhi and the complex C4 exhibited remarkable antimalarial activity (IC50, 0.42 μg/mL) among the tested compounds. Thus, azines based ligands and their Pd complexes can be good antimicrobial and antimalarial agents if explored further.  相似文献   

17.
New complexes have been synthesized of scorpionate ligands with cyano substituents in the 4-positions of the pyrazoles and tert-butyl substituents in the 3-positions of the pyrazoles. Reaction of Co2+, Mn2+, and Ni(cyclam)2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) with Tpt-Bu,4CN in a 1:2 ratio produced new octahedral metal complexes of the form (Tpt-Bu,4CN)2ML4 (L= (H2O)4, (H2O)2(MeOH)2, or cyclam). Unlike the sandwich complexes previously isolated with TpPh,4CN, the crystal structures showed none of the pyrazole nitrogen atoms coordinated to the metal. Rather, the metal is coordinated to one CN nitrogen atom from each ligand, with two Tp anions coordinated trans to each other around the metal center. This leaves the Tp pyrazole nitrogen atoms open for another metal to coordinate, which could to lead to heterometallic complexes, new coordination polymers, as well as the framework for supramolecular complexes.  相似文献   

18.
Despite the many enzymes that use 2-His-1-carboxylate facial triads to bind iron(II), there are few crystallographically characterized synthetic iron(II) complexes of tridentate ligands that bind through two imidazoles and one carboxylate. We report 1H NMR characterization of the equilibrium between one such ligand and aqueous Fe2+. The formation of 1:1 and 2:1 complexes is evident, but the 1:1 complex is never the exclusive compound in solution. This behavior has not been reported previously for N,N,O ligand-iron(II) complexes. The 2:1 ligand/iron complex crystallizes from solution, and it has been completely characterized including an X-ray crystal structure.  相似文献   

19.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

20.
Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号