首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-Amino-1,5-anhydro-2,3,6-trideoxy-l-arabino- and -l-ribo-hex-l-enitol were prepared by substitution of the allylic ester function of 1,5-anhydro-3,4-di-O-benzoyl-2,6-dideoxy-l-arabino-hex-l-enitol with sodium azide, followed by reduction with lithium aluminum hydride. Glycosidation was performed with various alcohols, in particular daunomycinone. In the latter case, the partial synthesis of 4′-epi- and 3′,4′-epi-daunorubicines was accomplished in three major steps.  相似文献   

2.
The synthesis and diastereoisomeric resolution of 2,6-diethyl-4,8-dimethyl-1,5-dioxo-s-hydrindacene allowed the determination of the structure of the meso compound by X-ray diffractometry. The diastereoisomers were inactive towards radical germylation but reacted with acidic hydrogermanes or germylithium yielding α-germylated alcohols. By contrast, they were poorly reactive towards germylamines or SET reactions. This diketone acts as an efficient spin trap in radical hydrogermylation of alkenes.  相似文献   

3.
Four novel disaccharides of glycosylated 1,5-anhydro-d-ketoses have been prepared: 1,5-anhydro-4-O-β-d-glucopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-galactopyranosyl-d-fructose, 1,5-anhydro-4-O-β-d-glucopyranosyl-d-tagatose, and 1,5-anhydro-4-O-β-d-galactopyranosyl-d-tagatose. The common intermediate, 1,5-anhydro-2,3-O-isopropylidene-β-d-fructopyranose, was prepared from d-fructose and was converted into the d-tagatose derivative by oxidation followed by stereoselective reduction to the 4-epimer. The anhydroketoses thus prepared were glycosylated and deprotected to give the disaccharides.  相似文献   

4.
Prinsepiol,a lignan from stems of Prinsepia utilis   总被引:1,自引:0,他引:1  
Chemical investigation of Prinsepia utilis yielded a new lignan designated prinsepiol, in addition to l-epicatechin and β-sitosteryl-β-glucoside. Prinsepiol was shown to be 1,5 - dihydroxy - 2,6 - di(4′ - hydroxy - 3′ - methoxyphenyl) - 3,7 - dioxabicyclo[3,3,o]octane, on the basis of spectral and other evidence.  相似文献   

5.
When Ribulose- 1,5-bisphosphate carboxylase/oxygenase was purified from spinach leaves (Spinacia oleracea) using precipitation with polyethylene glycol and MgCl2 followed by DEAE cellulose chromatography, 75% of phosphoribulokinase and 7% of phosphoriboisomerase activities copurified with ribulose- 1,5-bisphosphate carboxylase/oxygenase. This enzyme preparation showed ribose-5-phosphate and ribulose-5-phosphate dependent carboxylase and oxygenase activities which were nearly equivalent to its corresponding ribulose- 1,5-bisphosphate dependent activity. The ribose-5-phosphate and ribulose-5-phosphate dependent reaction rates were stable and linear for much longer time periods than the ribulose- 1,5-bisphosphate dependent rates. When sucrose gradients were used to purify ribulose- 1,5-bisphosphate carboxylase/oxygenase from crude stromal extracts, phosphoribulokinase was found to cosediment with ribulose- 1,5-bisphosphate carboxylase. Under these conditions most of the phosphoriboisomerase activity remained with the slower sedimenting proteins. Ammonium sulfate precipitation resulted in separation of the ribulose- 1,5-bisphosphate carboxylase peak from phosphoribulokinase peak. Crude extracts of peas Pisum sativum and spinach contained 0.725 to 0.730 milligram of phosphoribulokinase per milligram of chlorophyll, respectively, based on an enzyme-linked immunosorbent assay.  相似文献   

6.
2,6-Anhydro-1-deoxy-1-diazo-D-glycero-L-manno-heptitol (2) decomposes in 0.01M methanolic sodium methoxide with a half-life of approx. 18 min. Decomposition in aqueous solution is too rapid for spectrophotometric measurement. Seven products could be identified in methanolic and aqueous reaction mixtures. 2,6-Anhydro-1-deoxy-D-galacto-hept-1-enitol (6), 2,7-anhydro-1-deoxy-β-D-galacto-heptulopyranose (10), and 4-O-vinyl-D-lyxose (12) are products of rapid intramolecular reactions. The major portion consists of the direct solvolysis products 2,6-anhydro-1-O-methyl-D-glycero-L-manno-heptitol (3) and 2,6-anhydro-D-glycero-L-manno-heptitol (5).  相似文献   

7.
8.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified from chemolithotrophically grown Rhizobium japonicum SR and ribulose-5-phosphate kinase activity has also been detected in extracts of such cells. Electrophoretically homogeneous ribulosebisphosphate carboxylase/oxygenase purified in the presence of PMSF showed two types of large subunits of 55 000 and 53 000 daltons and small subunits of 14 200 daltons. The heterogeneity of large subunits was not observed when the enzyme was prepared in the presence of PMSF and DIFP. Ribulose-1,5-bisphosphate carboxylase from R. japonicum was inhibited by antibodies to this enzyme and a single precipitin band from the antibody-enzyme interaction was observed on double diffusion plates. Antibodies to R. japonicum enzyme did not cross-react on immunodiffusion plates with the ribulosebisphosphate carboxylase/oxygenases from wheat, spinach, soybean and tobacco.  相似文献   

9.
Occupational exposure to diisocyanates within the plastic industry causes irritation and disorders in the airway. The aim of this study was to develop, validate and characterize a method for the determination of 2,4-toluenediamine (2,4-TDA), 2,6-toluenediamine (2,6-TDA), 1,5-diaminonaphthalene (1,5-NDA) and 4,4′-methylenedianiline (4,4′-MDA) in hydrolysed urine and plasma, and to study the correlation between the plasma and urinary levels of these potential biomarkers of 2,4-toluene diisocyanate (2,4-TDI), 2,6-toluene diisocyanate (2,6-TDI), 1,5-naphthalene diisocyanate (1,5-NDI) and 4,4′-methylenediphenyl diisocyanate (4,4′-MDI), respectively. Samples were hydrolysed with 0.3 M NaOH at 100°C for 24 h. The diamines were extracted, derivatized with pentafluoropropionic acid anhydride, and quantified by selected ion monitoring on gas chromatography-mass spectrometry. The repeatability and reproducibility of the method were 7-18% and 7-19%, respectively. Dialysis experiments showed that the metabolites of 2,4-TDI, 2,6-TDI, 1,5-NDI and 4,4′-MDI in plasma were exclusively protein adducts. No free diamines were found in urine, indicating that all diisocyanate-related metabolites were in a conjugated form. For each diisocyanate-related biomarker, there were strongly significant correlations (p<0.001) between individual levels of metabolites in plasma and urine, with Spearman's rank correlation coefficient (rs) values of 0.74-0.90. The methods presented here will be valuable for the development of biological monitoring methods for diisocyanates.  相似文献   

10.
6-O-Acetyl-2,4-diazido-3-O-benzyl-2,4-dideoxy-β-D-glucopyranosyl chloride and 2,6-diazido-3,4-di-O-benzyl-2,6-dideoxy-β-D-glucopyranosyl chloride are two valuable building units suitable for the synthesis of α-linked disaccharides containing 2,4-diamino-2,4-dideoxy- or 2,6-diamino-2,6-dideoxy-D-glucose as nonreducing moieties. The glycoside synthesis is accomplished stereoselectively under mild conditions in the presence of silver perchlorate. The α-(1→3)-linked disaccharides 2,4-diacetamido-2,4-dideoxy-3-O-(2,4-diacetamido-2,4-dideoxy-α-D-glucopyranosyl)-D-glucopyranose and 2-acetamido-2-deoxy-3-O-(2,6-diacetamido-2,6-dideoxy-α-D-glucopyranosyl)-D-glucopyranose have been prepared.  相似文献   

11.
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser45 → His substantially fills the central cavity of pFBPase, and the triple mutation Ser45 → His, Thr46 → Arg, and Leu186 → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.  相似文献   

12.
New types of tridentate ligands, 2-(benzo[b]-1,5-naphthyridin-2-yl)-6-(quinolin-2-yl)-4-tert-butylpyridine (bnqp) and 2,6-bis(benzo[b]-1,5-naphthyridin-2-yl)-4-tert-butylpyridine (bbnp) that are able to accommodate and release two and four electrons, respectively, were synthesized. The palladium(II) complexes having the ligand, [PdCl(bnqp)](PF6) (1) and [PdCl(bbnp)](PF6) (2), were also prepared. The molecular structure of 2 was determined by a X-ray diffraction study, where the Pd-Cl coordination bond deviates from a square planner geometry with a N(2)-Pd(1)-Cl(1) angle of 166.6(1)° because of a steric hindrance of the hydrogen atom at the 10-position of benzo[b]-1,5-naphthyridin-2-yl groups. UV-Vis absorption spectra of 1 and 2 in DMSO did not show any interactions with HClO4, whereas the same acid significantly influenced the patterns of the ligand localized redox reaction in the cyclic voltammograms of those complexes. On the other hand, chemical reduction of 1 and 2 using Na2S2O3 or Na2S2O4 in CH3CN/H2O resulted in deposition of metallic palladium(0) with liberating the ligand probably due to the intramolecular electron transfer from the reduced ligand to the palladium(II) center.  相似文献   

13.
Methyl 2,6-dideoxy-α-L-arabino-hexopyranoside (6) was prepared from L-rhamnose in five steps. Hydrolysis of6 with 50% aqueous acetic acid gave 2,6-dideoxy-L-arabino-hexopyranose. Treatment of 3,4-di-O-acetyl-L-rhamnal with acetic acid in the presence of acetic anhydride and 2% sulfuric acid afforded 1,2,3-tri-O-acetyl-2,6-dideoxy-L-arabino-hexopyranose in 65% yield. Selective benzoylation and subsequent mesylation of 6 afforded methyl 3-O-benzoyl-2,6-dideoxy-4-O-mesyl-α-L-arabino-hexopyranoside, which was treated with sodium benzoate and sodium azide in hexamethylphosphoric triamide to give the corresponding 3,4-dibenzoyl 9 and 4-azido 11 analogs. Hydrogenation and N-acetylation of 11 afforded the 4-acetamido derivative 12. Deprotection of 9 and 12 gave 2,6-dideoxy-L-lyxo-hexopyranose and 4-acetamido-2,4,6-trideoxy-L-lyxo-hexopyranose, which were characterized as their peracetates. The free and corresponding peracetylated derivatives were assayed for their ability to inhibit the growth of P388 leukemia cells in culture. Although the free sugars did not inhibit the replication of these tumor cells under the conditions employed, their peracetylated derivatives demonstrated significant activity.  相似文献   

14.
The exchange properties of the activator CO2 of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase were characterized both in vitro with the purified enzyme, and in situ within isolated chloroplasts. Carboxyarabinitol-1,5-bisphosphate, a proposed reaction intermediate analog for the carboxylase activity of the enzyme, was used to trap the activator CO2 on the enzyme both in vitro and in situ. Modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity in intact chloroplasts during a light/dark cycle was associated with a similar modulation in carboxyarabinitol-1,5-bisphosphate-trapped CO2. The exchange kinetics of the activator CO2 were monitored by activation of the enzyme to steady state in the presence of 12CO2, followed by addition of 14CO2 and determination of the amount of labeled CO2 trapped on the enzyme by carboxyarabinitol-1,5-bisphosphate. Rate constants (Kobs) for exchange with both the purified enzyme (0.45 min−1) and in illuminated chloroplasts (0.18 min−1) were comparable to the observed rate constants for enzyme activation under the two conditions. A similar exchange of the activator CO2 was not observed in chloroplasts in the dark. Kinetic analysis of the exchange properties of the purified enzyme were consistent with an equilibrium between active and inactive forms of the enzyme during steady state activation.  相似文献   

15.
Four prenylated acetophenones 2,6-dihydroxy-4-geranyloxyacetophenone (1), 4-geranyloxy-2,6,β-trihydroxyacetophenone (2), 2,6-dihydroxy-4-geranyloxy-3-prenylacetophenone (3), and 4-geranyloxy-3-prenyl-2,6,β-trihydroxyacetophenone (4) have for the first time been isolated from Melicope obscura (1 and 2) and Melicope obtusifolia ssp. obtusifolia var. arborea (3 and 4). The distribution of prenylated acetophenones in Rutaceae is reviewed and the results, including the new records, indicate that prenylated acetophenones are valuable as chemotaxonomic markers for the subfamily Rutoideae, tribe Xanthoxyleae sensu Engler.  相似文献   

16.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

17.
18.
(i) We have studied the influence of reduced phosphoglucose-isomerase (PGI) activity on photosynthetic carbon metabolism in mutants of Clarkia xantiana Gray (Onagraceae). The mutants had reduced plastid (75% or 50% of wildtype) or reduced cytosolic (64%, 36% or 18% of wildtype) PGI activity. (ii) Reduced plastid PGI had no significant effect on metabolism in low light. In high light, starch synthesis decreased by 50%. There was no corresponding increase of sucrose synthesis. Instead glycerate-3-phosphate, ribulose-1,5-bisphosphate, reduction of QA (the acceptor for photosystem II) and energy-dependent chlorophyll-fluorescence quenching increased, and O2 evolution was inhibited by 25%. (iii) Decreased cytosolic PGI led to lower rates of sucrose synthesis, increased fructose-2,6-bisphosphate, glycerate-3-phosphate and ribulose-1,5-bisphosphate, and a stimulation of starch synthesis, but without a significant inhibition of O2 evolution. Partitioning was most affected in low light, while the metabolite levels changed more at saturating irradiances. (iv) These results provide decisive evidence that fructose-2,6-bisphosphate can mediate a feedback inhibition of sucrose synthesis in response to accumulating hexose phosphates. They also provide evidence that the ensuing stimulation of starch synthesis is due to activation of ADP-glucose pyrophosphorylase by a rising glycerate-3-phosphate: inorganic phosphate ratio, and that this can occur without any loss of photosynthetic rate. However the effectiveness of these mechanisms varies, depending on the conditions. (v) These results are analysed using the approach of Kacser and Burns (1973, Trends Biochem. Sci. 7, 1149–1161) to provide estimates for the elasticities and flux-control coefficient of the cytosolic fructose-1,6-bisphosphatase, and to estimate the gain in the fructose-2,6-bisphosphate regulator cycle during feedback inhibition of sucrose synthesis.Abbreviations and symbols Chl chlorophyll - Fru6P fructose-6-phosphate - Frul,6bisP fructose-1,6-bisphosphate - Fru-1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - Fru2,6Pase fructose-2,6-bisphosphatase - Glc6P glucose-6-phosphate - PGI phosphoglucose isomerase - Pi inorganic phosphate - QA acceptor for photosystem II - Ru1,5bisP ributose-1,5-bisphosphate - SPS sucrose-phosphate synthase  相似文献   

19.
Modified nucleotides are useful tools to study the structures, biological functions and chemical and thermodynamic stabilities of nucleic acids. Derivatives of 2,6-diaminopurine riboside (D) are one type of modified nucleotide. The presence of an additional amino group at position 2 relative to adenine results in formation of a third hydrogen bond when interacting with uridine. New method for chemical synthesis of protected 3′-O-phosphoramidite of LNA-2,6-diaminopurine riboside is described. The derivatives of 2′-O-methyl-2,6-diaminopurine and LNA-2,6-diaminopurine ribosides were used to prepare complete 2′-O-methyl RNA and LNA-2′-O-methyl RNA chimeric oligonucleotides to pair with RNA oligonucleotides. Thermodynamic stabilities of these duplexes demonstrated that replacement of a single internal 2′-O-methyladenosine with 2′-O-methyl-2,6-diaminopurine riboside (DM) or LNA-2,6-diaminopurine riboside (DL) increases the thermodynamic stability (ΔΔG°37) on average by 0.9 and 2.3 kcal/mol, respectively. Moreover, the results fit a nearest neighbor model for predicting duplex stability at 37°C. D-A and D-G but not D-C mismatches formed by DM or DL generally destabilize 2′-O-methyl RNA/RNA and LNA-2′-O-methyl RNA/RNA duplexes relative to the same type of mismatches formed by 2′-O-methyladenosine and LNA-adenosine, respectively. The enhanced thermodynamic stability of fully complementary duplexes and decreased thermodynamic stability of some mismatched duplexes are useful for many RNA studies, including those involving microarrays.  相似文献   

20.
Novel non-natural amino acids carrying a dansyl fluorescent group were designed, synthesized, and incorporated into various positions of streptavidin by using a CGGG four-base codon in an Escherichia coli in vitro translation system. 2,6-Dansyl-aminophenylalanine (2,6-dnsAF) was found to be incorporated into the protein more efficiently than 1,5-dansyl-lysine, 2,6-dansyl-lysine, and 1,5-dansyl-aminophenylalanine. Fluorescence measurements indicate that the position-specific incorporation of the 2,6-dnsAF is a useful technique to probe protein structures. These results also indicate that well-designed non-natural amino acids carrying relatively large side chains can be accepted as substrates of the translation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号