首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single enantiomers of the new 5-methyl-3-aryloxazolidine-2,4-diones have been obtained either by an asymmetric synthesis using the chiral pool strategy or by a semipreparative resolution of the racemic compound by HPLC on an optically active stationary phase. The single enantiomers were assayed for their in vitro monoamine oxidase (hMAO) inhibitory activity and selectivity. The most potent inhibitor among the studied compounds has been found as (5R)-3-phenyl-5-methyl-2,4-oxazolidinedione (compound 1-R) which appeared to be a good antidepressant drug candidate since it inhibited hMAO-A selectively, competitively and reversibly with Ki values in the micromolar range (0.16 ± 0.01 μM). To better understand the enzyme-inhibitor interaction and to explain the efficiency and selectivity of the compounds toward hMAOs, molecular modeling studies were carried out on new, high resolution hMAO-A and hMAO-B crystallographic structures. According to binding energies and inhibition constants obtained from molecular docking calculations, compound 1-R has been found as the most selective MAO-A inhibitor and its weak binding affinities to MAO-B (large Ki values) led to the enhancement in MAO-A selectivity. It bounded in close proximity to FAD in the active site of MAO-A and situated near the aromatic cage by means of π-alkyl interactions with Tyr407 and Phe352 whereas its position in MAO-B was 10 Å far from FAD and it was situated outside the Ile199 gate of the active site. None of the studied compounds showed any cytototoxicity on HepG2 cells at 1 and 5 µM concentrations.  相似文献   

2.
Osthenol (6), a prenylated coumarin isolated from the dried roots of Angelica pubescens, potently and selectively inhibited recombinant human monoamine oxidase-A (hMAO-A) with an IC50 value of 0.74?µM and showed a high selectivity index (SI?>?81.1) for hMAO-A versus hMAO-B. Compound 6 was a reversible competitive hMAO-A inhibitor (Ki?=?0.26?µM) with a potency greater than toloxatone (IC50?=?0.93?µM), a marketed drug. Isopsoralen (3) and bakuchicin (1), furanocoumarin derivatives isolated from Psoralea corylifolia L., showed slightly higher IC50 values (0.88 and 1.78?µM, respectively) for hMAO-A than 6, but had low SI values (3.1 for both). Other coumarins tested did not effectively inhibit hMAO-A or hMAO-B. A structural comparison suggested that the 8-(3,3-dimethylallyl) group of 6 increased its inhibitory activity against hMAO-A compared with the 6-methoxy group of scopoletin (4). Molecular docking simulations revealed that the binding affinity of 6 for hMAO-A (?8.5?kcal/mol) was greater than that for hMAO-B (?5.6?kcal/mol) and that of 4 for hMAO-A (?7.3?kcal/mol). Docking simulations also implied that 6 interacted with hMAO-A at Phe208 and with hMAO-B at Ile199 by carbon hydrogen bondings. Our findings suggest that osthenol, derived from natural products, is a selective and potent reversible inhibitor of MAO-A, and can be regarded a potential lead compound for the design of novel reversible MAO-A inhibitors.  相似文献   

3.
A novel series of 2-thiocarbamoyl-2,3,4,5,6,7-hexahydro-1H-indazole and 2-substituted thiocarbamoyl-3,3a,4,5,6,7-hexahydro-2H-indazoles derivatives were synthesized and investigated for the ability to inhibit the activity of the A and B isoforms of monoamine oxidase (MAO). The target molecules were identified on the basis of satisfactory analytical and spectra data (IR, 1H NMR, 13C NMR, 2D NMR, DEPT, EI-MASS techniques and elemental analysis). Synthesized compounds showed high activity against both the MAO-A (compounds 1d, 1e, 2c, 2d, 2e) and the MAO-B (compounds 1a, 1b, 1c, 2a, 2b) isoforms. In the discussion of the results, the influence of the structure on the biological activity of the prepared compounds was delineated. It was suggested that non-substituted and N-methyl/ethyl bearing compounds (except 2c) increased the inhibitory effect and selectivity toward MAO-B. The rest of the compounds, carrying N-allyl and N-phenyl, appeared to select the MAO-A isoform. The inhibition profile was found to be competitive and reversible for all compounds. A series of experimentally tested (1a2e) compounds was docked computationally to the active site of the MAO-A and MAO-B isoenzyme. The autodock 4.01 program was employed to perform automated molecular docking. In order to see the detailed interactions of the docked poses of the model inhibitors compounds 1a, 1d, 1e and 2e were chosen because of their ability to reversibly inhibit the MAO-B and MAO-A and the availability of experimental inhibition data. The differences in the intermolecular hydrophobic and H-bonding of ligands to the active site of each MAO isoform were correlated to their biological data. Observation of the docked positions of these ligands revealed interactions with many residues previously reported to have an effect on the inhibition of the enzyme. Excellent to good correlations between the calculated and experimental Ki values were obtained. In the docking of the MAO-A complex, the trans configuration of compound 1e made various very close interactions with the residues lining the active site cavity these interactions were much better than those of the other compounds tested in this study. This tight binding observation may be responsible for the nanomolar inhibition of form of MAOA. However, it binds slightly weaker (experimental Ki = 1.23 μM) to MAO-B than to MAO-A (experimental Ki = 4.22 nM).  相似文献   

4.
In the studied a series novel of lazabemide derivatives were designed, synthesized and evaluated as inhibitors of monoamine oxidase (MAO-A or MAO-B). These compounds used lazabemide as the lead compound, and the chemistry structures were modified by used the bioisostere and modification of compound with alkyl principle. The two types of inhibitors (inhibition of MAO-A and inhibition of MAO-B) were screened by inhibition activity of MAO. In vitro experiments showed that compounds 3a, 3d and 3f had intensity inhibition the biological activity of MAO-A, while compounds 3i and 3m had intensity inhibition the biological activity of MAO-B. It could be seen from the data of inhibition activity experiments in vitro, that the compound 3d was IC50?=?3.12?±?0.05?μmol/mL of MAO-A and compound 3m was IC50?=?5.04?±?0.06?μmol/mL. In vivo inhibition activity experiments were conducted to evaluate the inhibitory activity of compounds 3a, 3d, 3f, 3i and 3m by detecting the contents of 5-HT, NE, DA and activity of MAO-A and MAO-B in plasma and brain tissue. In vivo inhibition activity evaluation results showed that the compounds 3a, 3d, 3f, 3i and 3m had increased the contents of 5-HT, NE and DA in plasma and brain tissues. Meanwhile, the determination results activity of MAO in plasma and brain tissue showed that the compounds 3a, 3d, and 3f had a significant inhibitory effect on the activity of MAO-A, while the compounds 3i and 3m showed inhibitory effect on the activity of MAO-B. This study provided a new inhibitors for inhibiting of MAO activity.  相似文献   

5.
Previous studies have shown that harmine is a reversible inhibitor of human monoamine oxidase A (MAO-A). Moreover, the crystal structure of human MAO-A in complex with harmine has been recently solved. This crystal structure shows that close to the methoxy group of the harmine moiety, a lipophilic pocket is left vacant within the binding site of human MAO-A. Our objective was to optimize the ??-carboline series against human MAO-A in order to explore this pocket. Therefore, a series of ??-carboline derivatives has been synthesized. The compounds were evaluated for their human monoamine oxidase A and B inhibitory potency and their Ki values were estimated. The results show that O-alkylated compounds with lipophilic groups like cyclohexyl, phenyl and aliphatic chains increase the inhibition of MAO-A compared to harmine. Compound 3e, with the trifluorobutyloxy group, was the most active of this series, with a Ki against MAO-A of 3.6 nM. Molecular docking studies show that the trifluorobutyloxy chain occupies the hydrophobic pocket vacant with harmine. The O-alkylated compounds are less active on MAO-B than on MAO-A. However, several compounds show a better inhibition on MAO-B compared to harmine. Compound 3f, with the cyclohexylmethoxy chain, displayed the best inhibitory activity against MAO-B with a Ki value of 221.6 nM. This cyclohexyl bearing analogue is also a potent MAO-A inhibitor with a Ki value of 4.3 nM. Molecular docking studies show that the cyclohexyl chain also occupies a hydrophobic pocket but in different ways in MAO-A or MAO-B.  相似文献   

6.
Three flavanones and two flavones were isolated from the leaves of Prunus padus var. seoulensis by the activity-guided screening for new monoamine oxidase (MAO) inhibitors. Among the compounds isolated, rhamnocitrin (5) was found to potently and selectively inhibit human MAO-A (hMAO-A, IC50 = 0.051 µM) and effectively inhibit hMAO-B (IC50 = 2.97 µM). The IC50 value of 5 for hMAO-A was the lowest amongst all natural flavonoids reported to date, and the potency was 20.2 times higher than that of toloxatone (1.03 µM), a marketed drug. In addition, 5 reversibly and competitively inhibited hMAO-A and hMAO-B with Ki values of 0.030 and 0.91 µM, respectively. Genkwanin (4) was also observed to strongly inhibit hMAO-A and hMAO-B (IC50 = 0.14 and 0.35 µM, respectively), and competitively inhibit hMAO-A and hMAO-B (Ki = 0.097 and 0.12 µM, respectively). Molecular docking simulation reveals that the binding affinity of 5 with hMAO-A (−18.49 kcal/mol) is higher than that observed with hMAO-B (0.19 kcal/mol). Compound 5 interacts with hMAO-A at four possible residues (Asn181, Gln215, Thr336, and Tyr444), while hMAO-B forms a single hydrogen bond at Glu84. These findings suggest that compound 5 as well as 4 can be considered as novel potent and reversible hMAO-A and/or hMAO-B inhibitors or useful lead compounds for future development of hMAO inhibitors in neurological disorder therapies.  相似文献   

7.
A new series of pyrazoline derivatives were prepared starting from a quinazolinone ring and evaluated for antidepressant, anxiogenic and MAO-A and -B inhibitory activities by in vivo and in vitro tests, respectively. Most of the synthesized compounds showed high activity against both the MAO-A (compounds 4a4h, 4j4n, and 5g5l) and the MAO-B (compounds 4i and 5a5f) isoforms. However, none of the novel compounds showed antidepressant activity except for 4b. The reason for such biological properties was investigated by computational methods using recently published crystallographic models of MAO-A and MAO-B. The differences in the intermolecular hydrophobic and H-bonding of ligands to the active site of each MAO isoform were correlated to their biological data. Compounds 4i, 4k, 5e, 5i, and 5l were chosen for their ability to reversibly inhibit MAO-B and MAO-A and the availability of experimental inhibition data. Observation of the docked positions of these ligands revealed interactions with many residues previously reported to have an effect on the inhibition of the enzyme. Among the pyrazoline derivatives, it appears that the binding interactions for this class of compounds are mostly hydrophobic. All have potential edge-to-face hydrophobic interactions with F343, as well as π–π stacking with Y398 and other hydrophobic interactions with L171. Strong hydrophobic and H-bonding interactions in the MAO recognition of 4i could be the reason why this compound shows selectivity toward the MAO-B isoform. The very high MAO-B selectivity for 4i can be also explained in terms of the distance between the FAD and the compound, which was greater in the complex of MAO-A-4i as compared to the corresponding MAO-B complex.  相似文献   

8.
New series of bioactive 7-oxycoumarin derivatives were synthesized and tested for their in vitro and in vivo monoamine oxidase (MAO) A and B inhibitory effect. In vitro studies revealed exceptionally potent and selective MAO-A inhibitors with Ki values on a picomolar range. The acetohydrazide (3b) and the dioxopyrrolidine derivative (7b) showed the most potent in vitro and in vivo MAO inhibition activity. Moreover, molecular modeling study of the synthesized compounds into MAO-A (PDB: 2Z5X) and MAO-B (PDB: 2XFN) binding sites exhibited direct correlation between AutoDock binding affinity and% inhibition MAO-A (pM) and MAO-B (μM). In addition, the results of in vivo MAO inhibiting properties (ED50) of the tested compounds revealed better direct correlation.  相似文献   

9.
In the current work, Schiff base derivatives of antipyrine were synthesized. The chemical characterization of the compounds was confirmed using IR, 1H NMR, 13C NMR and mass spectroscopies. The inhibitory potency of synthesized compounds was investigated towards acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidases A and B (MAO-A and MAO-B) enzymes. Some of the compounds displayed significant inhibitory activity against AChE and MAO-B enzymes, respectively. According to AChE enzyme inhibition assay, compounds 3e and 3g were found as the most potent derivatives with IC50 values of 0.285 µM and 0.057 µM, respectively. Also, compounds 3a (IC50 = 0.114 µM), 3h (IC50 = 0.049 µM), and 3i (IC50 = 0.054 µM) were the most active derivatives against MAO-B enzyme activity. So as to understand inhibition type, enzyme kinetics studies were carried out. Furthermore, molecular docking studies were performed to define and evaluate the interaction mechanism between compounds 3g and 3h and related enzymes. ADME (Absorption, Distribution, Metabolism, and Excretion) and BBB (Blood, Brain, Barier) permeability predictions were applied to estimate pharmacokinetic profiles of synthesized compounds.  相似文献   

10.
New twenty compounds bearing thiazole ring (3a-3t) were designed and synthesized as monoamine oxidase (MAO) inhibitors. The fluorometric enzyme inhibition assay was used to determine the biological effects of synthesized compounds. Most of them showed remarkable inhibitory activity against both MAO-A and MAO-B. By comparing their IC50 values, it can be seen that active derivatives displayed generally selectivity on MAO-B enzyme. Compounds 3j and 3t, which bear dihydroxy moiety at the 3rd and 4th position of phenyl ring, were the most active derivatives in the series against both isoenzymes. Compounds 3j and 3t showed significant inhibition profile on MAO-A with the IC50 values of 0.134 ± 0.004 µM and 0.123 ± 0.005 µM, respectively, while they performed selectivity against MAO-B with the IC50 values of 0.027 ± 0.001 µM and 0.025 ± 0.001 µM, respectively. Also, docking studies about these compounds were carried out to evaluate their binding modes on the active regions of MAO-A and MAO-B.  相似文献   

11.
A series of 2-(indolylmethylidene)-2,3-dihydro-1-benzofuran-3-ones (aurone-indole hybrids) and 2-(indolyl)-4H-chromen-4-ones (flavone-indole hybrids) were designed, synthesized, and their monoamine oxidase (MAO) A and B inhibitory activities were evaluated. Compounds 5b and 11b showed potent inhibitory activities against MAO-A, comparable to that of pargyline used as a positive control, and most of the compounds, except for 2a and 10b, showed potent inhibitory activities against MAO-B. Compound 9a was the most potent and highly selective inhibitor of MAO-B (IC50 value for MAO-B: 0.0026 μM, and MAO-A: >100 μM). Comparison of the inhibitory activities of 1a vs. 9a vs. 13a and 1b vs. 7b vs. 11b suggested that methoxy substitution at R1 on the A-rings of flavonoids increases MAO-A inhibition whereas methoxy substitution at R2 increased MAO-B inhibition. Comparison of 4a vs. 10a, 6a vs. 11a, 3b vs. 8b and 4b vs. 9b showed incremental increases in MAO-B inhibitory activity by R2 substitution on the A ring. Comparison of the MAO-B inhibitory effects of the flavone-indole hybrids and aurone-indole hybrids showed that most of the aurone-indole hybrids were stronger inhibitors than the corresponding flavone-indole hybrids. Molecular docking analysis of compounds 1a and 9a with MAO-B further supported the above structural effects of these compounds on MAO-B inhibitory activity.This is the first report identifying aurone-indole hybrids as potent MAO-B inhibitors. The results reported here suggest that 2-(1H-indol-1-ylmethylene)-6-methoxy-3(2H)-benzofuranone (9a) might be a useful lead for the design and development of novel MAO-B inhibitors  相似文献   

12.
Twenty-two pyrazoline derivatives were synthesized and tested for their human MAO (hMAO) inhibitory activity. Twelve molecules with unsubstituted ring A and substituted ring C (5-16) were found to be potent inhibitors of hMAO-A isoform with SIMAO-A in the order 103 and 104. Ten molecules with unsubstituted ring A and without ring C (21-30), in which eight molecules (21, 23-26, and 28-30) were selective for hMAO-A, one for hMAO-B (22) and the other one non-selective (27). Presence of ring C increases potency as well as SI towards hMAO-A; however its absence decreases both potency and SI towards hMAO-A and hMAO-B.  相似文献   

13.
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.  相似文献   

14.
Benzyloxyphenyl moiety is a common structure of highly potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B), safinamide and sembragiline. We synthesized 4-(benzyloxy)phenyl and biphenyl-4-yl derivatives including halogen substituents on the terminal aryl unit. In addition, we modified the carbon linker between amine group and the biaryl linked unit. Among synthesized compounds, 12c exhibited the most potent and selective MAO-B inhibitory effect (hMAO-B IC50: 8.9?nM; >10,000-fold selectivity over MAO-A) as a competitive inhibitor. In addition, 12c showed greater MAO-B inhibitory activity and selectivity compared to well-known MAO-B inhibitors such as selegiline, safinamide and sembragiline. In the MPTP-induced mouse model of Parkinson’s disease (PD), 12c significantly protected the tyrosine hydroxylase (TH)-immunopositive DAergic neurons and attenuated the PD-associated behavioral deficits. This study suggests characteristic structures as a MAO-B inhibitor that may provide a good insight for the development of therapeutic agents for PD.  相似文献   

15.
16.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

17.
18.
Hispidol, an aurone, isolated from Glycine max Merrill, was found to potently and selectively inhibit an isoform of recombinant human monoamine oxidase-A (MAO-A), with an IC50 value of 0.26?µM, and to inhibit MAO-B, but with lower potency (IC50?=?2.45?µM). Hispidol reversibly and competitively inhibited MAO-A with a Ki value of 0.10?µM with a potency much greater than toloxatone (IC50?=?1.10?µM), a marketed drug. It also reversibly and competitively inhibited MAO-B (Ki?= 0.51?µM). Sulfuretin, an analog of hispidol, effectively inhibited MAO-A (IC50?=?4.16?µM) but not MAO-B (IC50?>?80?µM). A comparison of their chemical structures showed that the 3′-hydroxyl group of sulfuretin might reduce its inhibitory activities against MAO-A and MAO-B. Flexible docking simulation revealed that the binding affinity of hispidol for MAO-A (?9.1?kcal/mol) was greater than its affinity for MAO-B (?8.7?kcal/mol). The docking simulation showed hispidol binds to the major pocket of MAO-A or MAO-B. The findings suggest hispidol is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a novel lead compound for development of novel reversible inhibitors of MAO-A.  相似文献   

19.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

20.
A new series of [4-(3-methoxyphenyl)-thiazol-2-yl]hydrazyne derivatives were synthesized in good yield (71–99%) and characterized by elemental analysis and 1H NMR studies. The compounds were assayed for their in vitro human monoamine oxidase (hMAO) inhibitory activity and selectivity and most of them showed IC50 values in the nanomolar range, thus demonstrating our interest in this privileged scaffold. The most active and selective derivative (20), bearing a pyridine moiety on the CN, displayed IC50 = 3.81 ± 0.12 nM and selectivity ratio = 119 toward hMAO-B. Molecular modeling studies were carried out on recent and high resolution hMAO-A and hMAO-B crystallographic structures to better justify the enzyme–inhibitor interaction toward hMAO isoforms and to explain the structure–activity relationship of this kind of inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号