首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein described the design, synthesis and antitubercular evaluation of novel series of dibenzofuran, dibenzothiophene and N-methyl carbazole tethered 2-aminothiazoles and their cinnamamide analogs. One pot condensation of N-methyl carbazole, dibenzofuran and dibenzothiophene methyl ketones with thiourea in the presence of Iodine and CuO gave respective 2-aminothiazoles 46 in very good yields. Aminothiazoles were further coupled with substituted cinnamic acids using acid-amine coupling conditions to give desired cinnamamide analogs 8ae, 9ae and 10ae. All the newly synthesized compounds were fully characterized by their NMR and mass spectral analysis. In vitro screening of new derivatives against Mycobacterium tuberculosis H37Rv (Mtb) resulted 8c, 10d and 10e (MIC: 0.78?µg/mL) and 2-aminothiazoles 5 and 6 (MIC: 1.56?µg/mL) as potent compounds with lower cytotoxicity profile.  相似文献   

2.
Molecular hybridization is an emerging structural modification tool to design molecules with better pharmacophoric properties. A series of novel 2-(trifluoromethyl)phenothiazine-1,2,3-triazoles 5av designed by hybridizing two antitubercular drugs trifluoperazine and I-A09 in a single molecular architecture, were synthesized in very good yields using click chemistry. Among the all ‘22’ compounds screened for in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv (Mtb), three analogs 5c, 5l and 5o were found to be most potent (MIC: 6.25 μg/mL) antitubercular agents with good selectivity index.  相似文献   

3.
A series of novel 1,2,3-triazole-adamantylacetamide hybrids 5au, designed by combining bioactive fragments from antitubercular I-A09 and substituted adamantyl urea, were synthesized using copper catalyzed click chemistry. N-(1-Adamantyl)-2-azido acetamide 3 prepared from 1-adamantylamine was reacted with a series of alkyl/aryl acetylenes in the presence of copper sulfate and sodium ascorbate to give new analogues 5au in very good yields. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294), resulted N-(1-adamantan-1-yl)-2-(4-(phenanthren-2-yl)-1H-1,2,3-triazol-1-yl)acetamide (5t) as most promising lead MIC: 3.12 μg/mL) with selectivity index >15.  相似文献   

4.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

5.
Twelve novel fenfuram-diarylether hybrids were designed, synthesized and characterized by 1H NMR and MS. Their in vitro antifungal activities were evaluated against five phytopathogenic fungi by mycelial growth inhibition method. Most compounds showed significant antifungal effect on Rhizoctonia solani and Sclerotinia sclerotiorum. Compound 1c exhibited the most potent antifungal effect on R. solani with an EC50 value of 0.242 mg/L, superior to the commercial fungicide boscalid (EC50 = 1.758 mg/L) and the lead fungicide fenfuram (EC50 = 7.691 mg/L). Molecular docking revealed that compound 1c featured a higher affinity for succinate dehydrogenase (SDH) than fenfuram. Furthermore, it was shown that the 2-chlorophenyl group of compound 1c formed a π-π stacking with D/Tyr-128 and a Cl-π interaction with B/His-249, which made compound 1c more active than fenfuram against SDH.  相似文献   

6.
The emergence of tuberculosis (TB) produced by multi-drug resistance (MDR) and extensively-drug resistance (XDR) Mycobacterium tuberculosis (Mtb), encourages the development of new antituberculous compounds, as well as the identification of novel drug targets. In this regard, plasma membrane P-type ATPases are interesting targets because they play a crucial role in ion homeostasis and mycobacterial survival. We focused on Mtb CtpF, a calcium P-type ATPase that responds to a broad number of intraphagosomal conditions, as a novel target. In this study, we evaluated the capacity of cyclopiazonic acid (CPA), a well-known inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), to inhibit the ATPase activity of CtpF and the Mtb growth demonstrating that CtpF is a druggable target. A homology modeling of CtpF was generated for molecular docking studies of CtpF with CPA and key pharmacophoric features were identified, which were used to perform a pharmacophore-based virtual screening of the ZINC database, and to identify CtpF inhibitor candidates. Molecular docking-based virtual screening and MM-BGSA calculations of candidates allowed identifying six compounds with the best binding energies. The compounds displayed in vitro minimum inhibitory concentrations (MIC) ranging from 50 to 100 μg/mL, growth inhibitions from 29.5 to 64.0% on Mtb, and inhibitions of Ca2+-dependent ATPase activity in Mtb membrane vesicles (IC50) ranging from 4.1 to 35.8 μM. The compound ZINC63908257 was the best candidate by displaying a MIC of 50 μg/mL and a Ca2+ P-type ATPase inhibition of 45% with IC50 = 4.4 μM. Overall, the results indicate that CtpF is a druggable target for designing new antituberculous compounds.  相似文献   

7.
This work reports the synthesis of quinolone-N-acylhydrazone hybrids, namely 6-R-N'-(2-hydxoxybenzylidene)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (R = H: 5a, F: 5b, Cl: 5c and Br: 5d), which exhibited excellent activity against arbovirus Zika (ZIKV) and Chikungunya (CHIKV). In vitro screening towards ZIKV and CHIKV inhibition revealed that all substances have significant antiviral activity, most of them being more potent than standard Ribavirin (5a-d: EC50 = 0.75–0.81 μM, Ribavirin: EC50 = 3.95 μM for ZIKV and 5a-d: 1.16–2.85 μM, Ribavirin: EC50 = 2.42 μM for CHIKV). The quinolone-N-acylhydrazone hybrids were non-toxic against Vero cells, in which compounds 5c and 5d showed the best selectivities (SI = 1410 and 630 against ZIKV and CHIKV, respectively). Antiviral activity was identified by inhibition of viral RNA production in a dose-dependent manner. In the evaluation of the time of addition of the compounds, we observed that 5b and 5c remain with strong effect even in the addition for 12 h after infection. The above results indicate that quinolone-N-acylhydrazones represent a new and promising class to be further investigated as anti-ZIKV and anti-CHIKV agents.  相似文献   

8.
DNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase and is a well-established and validated target for the development of novel therapeutics. By adapting the medium throughput screening approach, we present the discovery and optimization of ethyl 5-(piperazin-1-yl) benzofuran-2-carboxylate series of mycobacterial DNA gyraseB inhibitors, selected from Birla Institute of Technology and Science (BITS) database chemical library of about 3000 molecules. These compounds were tested for their biological activity; the compound 22 emerged as the most active potent lead with an IC50 of 3.2 ± 0.15 μM against Mycobacterium smegmatis DNA gyraseB enzyme and 0.81 ± 0.24 μM in MTB supercoiling activity. Subsequently, the binding of the most active compound to the DNA gyraseB enzyme and its thermal stability was further characterized using differential scanning fluorimetry method.  相似文献   

9.
10.
Based on our previous research, three series of new triazolylthioacetamides possessing 3,4,5-trimethoxyphenyl moiety were synthesized, and evaluated for antiproliferative activities and inhibition of tubulin polymerization. The most promising compounds 8b and 8j demonstrated more significant antiproliferative activities against MCF-7, HeLa, and HT-29 cell lines than our lead compound 6. Moreover, analogues 8f, 8j, and 8o manifested more potent antiproliferative activities against HeLa cell line with IC50 values of 0.04, 0.05 and 0.16?μM, respectively, representing 100-, 82-, and 25-fold improvements of the activity compared to compound 6. Furthermore, the representative compound, 8j, was found to induce significant cell cycle arrest at the G2/M phase in HeLa cell lines via a concentration-dependent manner. Meanwhile, compound 8b exhibited the most potent tubulin polymerization inhibitory activity with an IC50 value of 5.9?μM, which was almost as active as that of CA-4 (IC50?=?4.2?μM). Additionally, molecular docking analysis suggested that 8b formed stable interactions in the colchicine-binding site of tubulin.  相似文献   

11.
A series of novel 10-substituted 2-hydroxypyrrolobenzodiazepine-5,11-diones designed through structure based rational hybridization approach, synthesized by the cyclodehydration of isotonic anhydride with (2S,4R)-4-hydroxypyrrolidine-2-carboxylic acid followed by N-substitution, were evaluated as angiotensin converting enzyme (ACE) inhibitors. Among all the new compounds screened (2R,11aS)-10-((4-bromothiophen-2-yl)methyl)-2-hydroxy-2,3-dihydro-1H-benzo[e]pyrrolo[1,2-a][1,4]diazepine-5,11(10H,11aH)dione, 5v (IC50: 0.272 μM) emerged as most active non-carboxylic acid ACE inhibitor with minimal toxicity comparable to clinical drugs Lisinopril, Benazepril and Ramipril. Favorable binding characteristics in docking studies also supported the experimental results.  相似文献   

12.
A new convenient method for preparation of 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5bg and coumarin containing hydrazide-hydrazone analogues 4ae was presented. The antimycobacterial activity against reference strain Mycobacterium tuberculosis H37Rv and cytotoxicity against the human embryonic kidney cell line HEK-293 were tested in vitro. All compounds demonstrated significant minimum inhibitory concentrations (MIC) ranging 0.28–1.69 μM, which were comparable to those of isoniazid. The cytotoxicity (IC50 > 200 µM) to the “normal cell” model HEK-293T exhibited by 2-aroyl-[1]benzopyrano[4,3-c]pyrazol-4(1H)-one derivatives 5be, was noticeably milder compared to that of their hydrazone analogues 4ae (IC50 33–403 µM). Molecular docking studies on compounds 4ae and 5bg were also carried out to investigate their binding to the 2-trans-enoyl-ACP reductase (InhA) enzyme involved in M. tuberculosis cell wall biogenesis. The binding model suggested one or more hydrogen bonding and/or arene-H or arene-arene interactions between hydrazones or pyrazole-fused coumarin derivatives and InhA enzyme for all synthesized compounds.  相似文献   

13.
The emergence of multi-drug resistant tuberculosis, coupled with the increasing overlap of the AIDS and tuberculosis pandemics has brought tuberculosis to the forefront as a major worldwide health concern. In an attempt to find new inhibitors of the enzymes in the essential rhamnose biosynthetic pathway, a virtual library of 2,3,5 trisubstituted-4-thiazolidinones was created. These compounds were then docked into the active site cavity of 6'hydroxyl; dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC) from Mycobacterium tuberculosis. The resulting docked conformations were consensus scored and the top 5% were slated for synthesis. Thus far, 94 compounds have been successfully synthesized and initially tested. Of those, 30 (32%) have > or =50% inhibitory activity (at 20 microM) in the coupled rhamnose synthetic assay with seven of the 30 also having modest activity against whole-cell M. tuberculosis.  相似文献   

14.
To develop agents for the treatment of infections caused by Mycobacterium tuberculosis, a novel phenotypic screen was undertaken that identified a series of 2-N-aryl thiazole-based inhibitors of intracellular Mycobacterium tuberculosis. Analogs were optimized to improve potency against an attenuated BSL2 H37Ra laboratory strain cultivated in human macrophage cells in vitro. The insertion of a carboxylic acid functionality resulted in compounds that retained potency and greatly improved microsomal stability. However, the strong potency trends we observed in the attenuated H37Ra strain were inconsistent with the potency observed for virulent strains in vitro and in vivo.  相似文献   

15.
Based on crystallographic overlays of the known inhibitors TMC125 and R221239 complexed in RT, we designed a novel series of 4-phenoxy-6-(phenylamino)pyridin-2(1H)-one derivatives as HIV NNRTIs by molecular hybridization approach. The biological testing results indicated that 2-pyridone scaffold of these inhibitors was indispensable for their anti-HIV-1 activity, and substitution of halogen at the 3-position of the 2-pyridone ring would decrease the anti-HIV activity. Four most potent compounds had anti-HIV-1 IIIB activities at low micromolar concentrations (EC50 = 0.15–0.84 μM), comparable to that of nevirapine and delavidine. Some compounds were selected to test their anti-HIV-1 RT inhibitory action and to perform molecular modeling studies to predict the binding mode of these 2-pyridone derivatives.  相似文献   

16.
A series of 1,2,3-triazole-bearing benzenesulfonamides was assessed for the inhibition of carbonic anhydrases (CA, EC 4.2.1.1) from bacteria Vibrio cholerae (VchCAα and VchCAβ) and Mycobacterium tuberculosis (β-mtCA3). Growing resistance phenomena against existing antimicrobial drugs are globally spreading and highlight a urgent need of agents endowed with alternative mechanisms of action. Two global WHO strategies aim to reduce cholera deaths by 90% and eradicate the tuberculosis epidemic by 2030. The derivatives here reported represent interesting leads towards the optimization of new antibiotic agents showing excellent inhibitory efficiency and selectivity for the target CAs over the human (h) off-target isoform hCA I. In detail, the first subset of derivatives potently inhibits VchCAα in a low nanomolar range (KIs between 0.72 and 22.6 nM). Compounds of a second subset, differing from the first one for the position of the spacer between benzenesulfonamide and triazole, preferentially inhibit VchCAβ (KIs in the range 54.8–102.4 nM) and β-mtCA3 (KIs in the range 28.2–192.5 nM) even more than the clinically used AAZ, used as the standard.  相似文献   

17.
The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.  相似文献   

18.
A series of novel purine linked piperazine derivatives were synthesized to identify new, potent inhibitors of Mycobacterium tuberculosis. The compounds were designed to target MurB disrupting the biosynthesis of the peptidoglycan and exert antiproliferative effects. The first series of purine-2,6-dione linked piperazine derivatives were synthesized using an advanced intermediate 1-(3,4-difluorobenzyl)-7-(but-2-ynyl)-3-methyl-8-(piperazin-1-yl)-1H-purine-2,6(3H,7H)-dione hydrochloride (6) which was coupled with varied carboxylic acid chloride derivatives. Following this piperazine linked derivatives were also synthesized from 6 using diverse isocyanate partners. The anti-mycobacterial activity of the analogues was tested against Mycobacterium tuberculosis H37Rv which revealed a cluster of six analogues (11, 24, 27, 32, 33 and 34), possessed promising activity. In comparison, a set of these new compounds possessed greater potencies relative to current drugs used in the clinic such as Ethambutol. These results were also correlated with computational molecular docking analysis, providing models for strong interactions of the inhibitors with MurB providing a template for the future development of preclinical agents against Mycobacterium tuberculosis.  相似文献   

19.
Cathepsins have been found to have important physiological roles. The implication of cathepsin L in various types of cancers is well established. In a search for selective cathepsin L inhibitors as anticancer agents, a series of 2-cyanoprrolidine peptidomimetics, carrying a nitrile group as warhead, were designed. Two series of compounds, one with a benzyl moiety and a second with an isobutyl moiety at P2 position of the enzyme were synthesized. The synthesized compounds were evaluated for inhibitory activity against human cathepsin L and cathepsin B. Although, none of the compounds showed promising inhibitory activity, (E)N-{(S)1-[(S)2-cyano-1-pyrrolidinecarbonyl]-3-methylbutyl}-2,3-diphenylacrylamide (24) with an isobutyl moiety at P2 was found to show selectivity as a cathepsin L inhibitor (Ki 5.3 μM for cathepsin L and Ki > 100 μM for cathepsin B). This compound could act as a new lead for the further development of improved inhibitors within this inhibitor type.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号