首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myosin has been purified from the following cultured cell lines: normal rat kidney fibroblast (NRK), HeLa-Rhino (HeLa), human choriocarcinoma, human acute lymphoblastic leukemia, rat hepatoma (HTC), monkey kidney (VERO), pigmented mouse melanoma, Y-1 rat adrenal cortex, and growth hormone-secreting GH-1. Myosin constitutes 0.5-5.4% of the protein of these cells. It was not detected in washed human erythrocytes or in two types of mouse plasmacytoma cells. Two methods for the purification of myosin from cultured cells have been employed. With Method I highly purified myosin was prepared by Sepharose 4B and DEAE-cellulose chromatography from 10(10) L-929 cells as well as from mouse uterus. Those myosins have similar molecular and subunit weights as well as ATPase activity but are immunologically distinct. Method II involving ultracentrifugation and Sepharose 4B chromatography, is suitable for the production of moderately pure myosin in good yield from as few as 5-10(7) cells (five 100-mm Petrie dishes).  相似文献   

2.
Myosin I is an actin-based motor responsible for powering a wide variety of motile activities in amebae and slime molds and has been found previously in vertebrates as the lateral bridges within intestinal epithelial cell microvilli. Although neurons exhibit extensive cellular and intracellular motility, including the production of ameboid-like growth cones during development, the proteins responsible for the motor in these processes are unknown. Here, we report the isolation of a partially purified protein fraction from bovine brain that is enriched for a 150-kDa protein; immunochemical and biochemical analyses suggest that this protein possesses a number of functional properties that have been ascribed to myosin I from various sources. These properties include an elevated K(+)-EDTA ATPase, a modest actin-activated Mg(2+)-ATPase, the ability to bind calmodulin, and a ready association with phospholipid vesicles made from phosphatidylserine, but not from phosphatidylcholine. The combination of these properties, together with a molecular mass of 150 kDa (most myosin I molecules found to date have molecular masses in the range 110-130 kDa) yet recognition by an anti-myosin I antibody, suggests the presence of a new member of the myosin I family within mammalian brain.  相似文献   

3.
Myosin II light chains (MLC20) are phosphorylated by a Ca2+/calmodulin-activated kinase and dephosphorylated by a phosphatase that has been purified as a trimer containing the delta isoform of type 1 catalytic subunit (PP1C delta), a myosin-binding 130-kDa subunit (M130) and a 20-kDa subunit. The distribution of M130 and PP1C as well as myosin II was examined in smooth muscle cells and fibroblasts by immunofluorescence microscopy and immunoblotting after differential extraction. Myosin and M130 colocalized with actin stress fibers in permeabilized cells. However, in nonpermeabilized cells the staining for myosin and M130 was different, with myosin mostly at the periphery of the cell and the M130 appearing diffusely throughout the cytoplasm. Accordingly, most M130 was recovered in a soluble fraction during permeabilization of cells, but the conditions used affected the solubility of both M130 and myosin. The PP1C alpha isoform colocalized with M130 and also was in the nucleus, whereas the PP1C delta isoform was localized prominently in the nucleus and in focal adhesions. In migrating cells, M130 concentrated in the tailing edge and was depleted from the leading half of the cell, where double staining showed myosin II was present. Because the tailing edge of migrating cells is known to contain phosphorylated myosin, inhibition of myosin LC20 phosphatase, probably by phosphorylation of the M130 subunit, may be required for cell migration.  相似文献   

4.
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

5.
Myosin was purified from bovine erythrocytes by chromatography on DEAE-cellulose, Sepharose CL-4B, hydroxylapatite, and DEAE-5PW. The yield was about 200 micrograms/L of packed cells. From SDS-polyacrylamide gels, the purity was estimated to be greater than 95%. The bovine erythrocyte myosin is composed of heavy chains of 200 kDa and light chains of 20 and 17 kDa, in a molar stoichiometry of 1. Myosin was also purified from human erythrocytes by the same method. The molecular weights of two light chains were 26K and 19.5K which confirmed the earlier reports [Fowler, V. M., Davis, J. Q., & Bennet, V. (1985) J. Cell Biol. 100, 47-55; Wong, A. J., Kiehart, D. P., & Pollard, T.D. (1985) J. Biol. Chem. 260, 46-49]. Phosphorylation by gizzard myosin light chain kinase, to a level of 1 mol of phosphate/mol of 20-kDa light chain, increased actin-activated ATPase, and the extent of activation was dependent on the MgCl2 concentration. Both Ca2+-ATPase and Mg2+-ATPase activities were dependent on KCl concentration and markedly decreased below 0.3 M KCl. Mg2+-ATPase of phosphorylated myosin, while more resistant to decreasing ionic strength, was also decreased below 0.2 M KCl. These results are similar to those obtained with smooth muscle myosin and suggest that the 10S-6S transition occurs. In confirmation of this, gel filtration, viscosity, and electron microscopy (rotary shadowing) show that erythrocyte myosin forms extended and folded conformations in high and low salt, respectively. It is proposed that each conformation is characterized by distinct enzymatic properties.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

7.
In an effort to determine diversity and function of mammalian myosin I molecules, we report here the cloning and characterization of myr 3 (third unconventional myosin from rat), a novel mammalian myosin I from rat tissues that is related to myosin I molecules from protozoa. Like the protozoan myosin I molecules, myr 3 consists of a myosin head domain, a single light chain binding motif, and a tail region that includes a COOH-terminal SH3 domain. However, myr 3 lacks the regulatory phosphorylation site present in the head domain of protozoan myosin I molecules. Evidence was obtained that the COOH terminus of the tail domain is involved in regulating F-actin binding activity of the NH2-terminal head domain. The light chain of myr 3 was identified as the Ca(2+)-binding protein calmodulin. Northern blot and immunoblot analyses revealed that myr 3 is expressed in many tissues and cell lines. Immunofluorescence studies with anti-myr 3 antibodies in NRK cells demonstrated that myr 3 is localized in the cytoplasm and in elongated structures at regions of cell-cell contact. These elongated structures contained F-actin and alpha-actinin but were devoid of vinculin. Incubation of NRK cells with Con A stimulated the formation of myr 3-containing structures along cell-cell contacts. These results suggest for myr 3 a function mediated by cell-cell contact.  相似文献   

8.
Ceramide glycanase (CGase) activities have been detected in different human tumor cells (colon, carcinoma Colo-205; neuroblastoma, IMR-32; breast cancer lines, SKBr3 and MCF7). However, the level of enzymatic activity is lower in these cells compared to that present in other mammalian tissues reported before (Basu, M., Kelly, P., Girzadas, M. A., Li, Z., and Basu, S. Methods Enzymol. (in press)). The majority of CGase activity was found in the 100,000g soluble supernatant fraction isolated from all these cell lines and tissues. Using the soluble enzyme, the requirement for optimum CGase activity was found to be consistent with previous observations found for rat and rabbit tissues (Basu, M., Dastgheib, S., Girzadas, M. A., O'Donnell, P. H., Westervelt, C. W., Li, Z., Inokuchi, J. I., and Basu, S. (1998) Acta Pol. Biochim. 42:327). The CGase activities from both Colo-205 and IMR-32 cells are optimum at a protein to detergent ratio of one. All the mammalian CGases, including human cancer cells, show an optimum pH between 5.5 and 5.8 in sodium acetate buffer. The CGase activities from cancer cells are found to be cation-independent; however, mercury, zinc, and copper ions seem to inhibit the enzyme activity substantially in both tumor cells lines. The mercury ion inhibition of CGase activities from all different sources indicates a possible structural homology in the CGase proteins.Radiolabeled substrates, labeled at the sphingosine double bond or at the 3-position of sphingosine without modifying double bond of sphingosine were used in this investigation. Both were active substrates with all enzyme preparations isolated from different cancer cells (apparent Km, 500 M for nLcOse5[3H-DT]Cer and 350 M for GgOse4[sph-3-3H]Cer with Colo-205 enzyme). Structural analogues of ceramide and sphingosine (L-PPMP, L-PDMP, alkylamines, and Tamoxifen) inhibited cancer cell CGase activities in vitro.  相似文献   

9.
Properties and function of phosphatases from vascular smooth muscle   总被引:1,自引:0,他引:1  
Myosin light chain phosphatase (MLCP) activity was present in extracts from a wide variety of mammalian tissues. A partially purified preparation of bovine aortic MLCP also showed activity against phosphorylase a and p-nitrophenyl phosphate (PNP). Whether these three activities are ascribable to a single multifunctional phosphatase or to three distinct phosphatases is unknown. The three phosphatase activities coelute during gel filtration both before and after treatment with ethanol showing exclusion volumes corresponding to 240,000 and 35,000 daltons, respectively. This indicates that the enzyme is dissociable into a smaller catalytic subunit. The widespread occurrence of MLCP activity and the close parallel among MLCP, phosphorylase a phosphatase, and PNP phosphatase activities suggest that the enzyme (or enzymes) may participate in physiological processes in addition to dephosphorylation of phosphorylated myosin light chains.  相似文献   

10.
《The Journal of cell biology》1993,120(6):1405-1416
A polymerase chain reaction strategy was devised to identify new members of the mammalian myosin I family of actin-based motors. Using cellular RNA from mouse granular neurons and PC12 cells, we have cloned and sequenced three 1.2-kb polymerase chain reaction products that correspond to novel mammalian myosin I genes designated MMI alpha, MMI beta, MMI gamma. The pattern of expression for each of the myosin I's is unique: messages are detected in diverse tissues including the brain, lung, kidney, liver, intestine, and adrenal gland. Overlapping clones representing full-length cDNAs for MMI alpha were obtained from mouse brain. These encode a 1,079 amino acid protein containing a myosin head, a domain with five calmodulin binding sites, and a positively charged COOH-terminal tail. In situ hybridization reveals that MMI alpha is highly expressed in virtually all neurons (but not glia) in the postnatal and adult mouse brain and in neuroblasts of the cerebellar external granular layer. Expression varies in different brain regions and undergoes developmental regulation. Myosin I's are present in diverse organisms from protozoa to vertebrates. This and the expression of three novel members of this family in brain and other mammalian tissues suggests that they may participate in critical and fundamental cellular processes.  相似文献   

11.
《The Journal of cell biology》1993,120(6):1381-1391
Myosin I is present in Swiss 3T3 fibroblasts and its localization reflects a possible involvement in the extension and/or retraction of protrusions at the leading edge of locomoting cells and the transport of vesicles, but not in the contraction of stress fibers or transverse fibers. An affinity-purified polyclonal antibody to brush border myosin I colocalizes with a polypeptide of 120 kD in fibroblast extracts. Within initial protrusions of polarized, migrating fibroblasts, myosin I exhibits a punctate distribution, whereas actin is diffuse and myosin II is absent. Myosin I also exists in linear arrays parallel to the direction of migration in filopodia and microspikes, established protrusions, and within the leading lamellae of migrating cells. Myosin II and actin colocalize along transverse fibers in the lamellae of migrating cells, while myosin I displays no definitive organization along these fibers. During contractions of actin-based fibers, myosin II is concentrated in the center of the cell, while the distribution of myosin I does not change. Thus, myosin I is found at the correct location and time to be involved in the extension and/or retraction of protrusions and the transport of vesicles. Myosin II-based contractions in more posterior cellular regions could generate forces to separate cells, maintain a polarized cell shape, maintain the direction of locomotion, maximize the rate of locomotion, and/or aid in the delivery of cytoskeletal/contractile subunits to the leading edge.  相似文献   

12.
Plasma membrane association of Acanthamoeba myosin I   总被引:19,自引:15,他引:4       下载免费PDF全文
《The Journal of cell biology》1989,109(4):1519-1528
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.  相似文献   

13.
The general protein kinase inhibitor staurosporine (STS) has dual effects on human epidermoid cancer cells (A431) and normal rat kidney fibroblasts (NRK). It almost immediately stimulated increased lamellipodial activity of both cell lines and after 2 h induced typical signs of apoptosis, including cytoplasmic condensation, nuclear fragmentation, caspase-3 activation and DNA degradation. In the early phase we observed disruption of actin-containing stress fibres and accumulation of monomeric actin in the perinuclear region and cell nucleus. Increased lamellipodial-like extensions were observed particularly in A431 cells as demonstrated by co-localisation of actin and Arp2/3 complex, whereas NRK cells shrunk and exhibited numerous thin long extensions. These extensions exhibited uncoordinated centrifugal motile activity that appeared to tear the cells apart. Both cofilin and ADF were translocated from perinuclear regions to the cell cortex and, as expected in the presence of a kinase inhibitor, all the cofilin was dephosphorylated. Myosin II was absent from the extensions, and a reduction of phosphorylated myosin light chains was observed within the cytoplasm indicating myosin inactivation. Microtubules and intermediate filaments retained their characteristic filamentous organisation after STS exposure even when the cells became rounded and disorganised. Simultaneous treatment of NRK cells with STS and the caspase inhibitor zVAD did not inhibit the morphological and cytoskeletal changes. However, the cells underwent cell death as verified by positive annexin-V-staining. Thus it seems likely that cell death induced by STS may not only be a consequence of the activation of caspase, instead the disruption of the many motile processes involving the actin cytoskeleton may by itself suffice to induce caspase-independent cell death.  相似文献   

14.
A neu/erb B2 ligand growth factor (NEL-GF) was purified to homogeneity from bovine kidney by a procedure involving ammonium sulfate fractionation (35-70% saturation) followed by sequential column chromatography on DEAE-cellulose (DE52), Sulfadex (sulfated Sephadex G-50), heparin-Sepharose 4B, and Superdex 75 (fast protein liquid chromatography). NEL-GF was found to be a 25-kDa polypeptide according to the analysis by gel filtration on Superdex 75 and 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NEL-GF stimulated the tyrosine-specific autophosphorylation of the neu/erb B2 gene product purified by immunoabsorbent and tyrosine-specific phosphorylation of the neu/erb B2 gene product in intact dihydrofolate reductase (DHFR/G-8 cells (NIH 3T3 cells transfected with rat c-neu). NEL-GF also down-regulated the cell surface neu/erb B2 gene product in DHFR/G-8 cells. NEL-GF was mitogenic toward NIH 3T3 cells, DHFR/G-8 cells, A431 cells (human epidermoid carcinoma cells), and SK-BR-3 cells (human breast carcinoma cells) but inactive toward bovine aorta endothelial cells. NEL-GF was sensitive to 0.1% trifluoroacetic acid but resistant to 5% beta-mercaptoethanol and appeared to be distinct from a neu protein-specific activating factor (Davis, J. G., Hamuro, J., Shim, C. Y., Samanta, A., Greene, M. I., and Dobashi, K. (1991) Biochem. Biophys. Res. Commun. 179, 1536-1542) and a 30-kDa glycoprotein which competed with a monoclonal antibody for binding to the neu/erb B2 gene product (Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D., and Lippman, M. E. (1990) Science 249, 1552-1555).  相似文献   

15.
There are two classes of myosin, XI and VIII, in higher plants. Myosin XI moves actin filaments at high speed and its enzyme activity is also very high. In contrast, myosin VIII moves actin filaments very slowly with very low enzyme activity. Because most of these enzymatic and motile activities were measured using animal skeletal muscle α-actin, but not plant actin, they would not accurately reflect the actual activities in plant cells. We thus measured enzymatic and motile activities of the motor domains of two Arabidopsis myosin XI isoforms (MYA2, XI-B), and one Arabidopsis myosin VIII isoform (ATM1), by using three Arabidopsis actin isoforms (ACT1, ACT2, and ACT7). The measured activities were different from those measured by using muscle actin. Moreover, Arabidopsis myosins showed different enzymatic and motile activities when using different Arabidopsis actin isoforms. Our results suggest that plant actin should be used for measuring enzymatic and motile activities of plant myosins and that different actin isoforms in plant cells might function as different tracks along which affinities and velocities of each myosin isoform are modulated.  相似文献   

16.
We have performed a combined biochemical and immunochemical study on the identity of peptidylarginine deiminases (EC 3.5.3.15) present in various mammalian tissues. First, we purified peptidylarginine deiminase from rat skeletal muscle. It gave a single band of molecular weight 83,000 in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Next we immunized rabbits with the purified enzyme. The resulting antibodies reacted specifically with the antigen in Western blot assay. Most of the enzyme activities present in rat skeletal muscle, brain, spinal cord, submaxillary gland and spleen could be characterized as the same muscle-type enzyme by immunoprecipitation and Western blot assay. The antibodies did not react with enzyme samples obtained from rat hair follicles and bovine epidermis. The lack of immunoreactivity of the epidermal enzyme could not be accounted for by the species difference, since the antibodies reacted with a 83 kDa polypeptide of bovine brain, which was thought to represent a bovine counterpart of the muscle-type enzyme. The epidermal enzyme could be distinguished from the other enzyme samples by its high activity towards benzoylarginine. These data suggest the existence of at least three types of peptidylarginine deiminase in mammalian tissues, i.e., a muscle type, a hair follicle type, and an epidermal type.  相似文献   

17.
Changes in myosin during differentiation of myeloid leukemia cells   总被引:1,自引:0,他引:1  
Changes in cellular myosin were followed during the differentiation into macrophages of a myeloid leukemia cell line (Ml) which can be induced by conditioned medium (CM) from a rat embryo culture. To extract the myosin, we used three different procedures, all of which gave a lower yield of myosin for the differentiated than for the undifferentiated Ml cells. This low extractability we attributed to increased binding of the myosin to the plasma membrane. Taking the different extractabilities into consideration, we calculated the myosin contents in the total cellular protein from the densitometry of SDS-polyacrylamide electrophoresis, 0.6% for the untreated Ml cells and 1.0% for the differentiated ones. The three ATPase activities of the Ml cell myosin were in the order, K+-EDTA-=Ca2+- much greater than Mg2+-ATPase in the presence of 0.6 M KCl, whether or not there was treatment with CM. Myosin was purified through fractionation with 25-55% saturated ammonium sulfate, then gel filtration with Sepharose 4B followed by affinity chromatography on F actin-Sepharose 4B. The Ml cell myosin consists of 1 heavy chain (H) and 3 light chains (L1, L2, L3), with molecular ratios of L1 + L2/H not equal to and L3/H not equal to 1. The ratio of L1/L2 was about 1.2 for the untreated Ml cells, but it decreased to about 0.7 after differentiation.  相似文献   

18.
Rabbit antibodies raised against bovine kidney aldose reductase (ALR2) were shown to be monospecific by Western blot analysis of kidney homogenates. In addition, the antiserum (alpha-BKALR2) reacts with a single electrophoretic species in homogenates from rabbit, porcine, and human kidney. ALR2 has been detected in homogenates of bovine kidney, heart, brain and lens, and estimation of the enzyme level in these tissues was accomplished by densitometric analysis of Western blots. Standard curves using highly purified bovine kidney ALR2 were linear in the range of 5-100 ng; a similar sensitivity was seen in tissue homogenates. The results presented here for the ALR2 level in bovine tissues (kidney greater than heart greater than brain greater than lens) are in agreement with literature values for those tissues from which the enzyme has previously been purified. The interspecies similarity in electrophoretic mobility and the retention of antibody reactivity suggest extensive phylogenetic epitope conservation in mammalian aldose reductase.  相似文献   

19.
Neuronal cells must extend a motile growth cone while maintaining the cell body in its original position. In migrating cells, myosin contraction provides the driving force that pulls the rear of the cell toward the leading edge. We have characterized the function of myosin light chain phosphatase, which down-regulates myosin activity, in Drosophila photoreceptor neurons. Mutations in the gene encoding the myosin binding subunit of this enzyme cause photoreceptors to drop out of the eye disc epithelium and move toward and through the optic stalk. We show that this phenotype is due to excessive phosphorylation of the myosin regulatory light chain Spaghetti squash rather than another potential substrate, Moesin, and that it requires the nonmuscle myosin II heavy chain Zipper. Myosin binding subunit mutant cells continue to express apical epithelial markers and do not undergo ectopic apical constriction. In addition, mutant cells in the wing disc remain within the epithelium and differentiate abnormal wing hairs. We suggest that excessive myosin activity in photoreceptor neurons may pull the cell bodies toward the growth cones in a process resembling normal cell migration.  相似文献   

20.
Type I iodothyronine 5'-deiodinase is an integral membrane protein catalyzing the phenolic ring deiodination of thyroxine. We recently showed that the substrate binding subunit of this approximately 50-kDa protein is selectively labeled with N-bromoacetyl-L-thyroxine, allowing ready identification of the type I enzyme without the need to maintain catalytic activity. In this study, we used both affinity labeling and catalytic activity to determine the regional distribution of this enzyme in rat kidney and to localize the enzyme to specific plasma membrane domain(s) of renal epithelial cells. The type I enzyme was present exclusively in tubular epithelial cells of the outer renal cortex and co-purified with basolateral plasma membranes; the renal medulla lacked activity. LLC-PK1 cells, derived from the proximal convoluted tubule, have abundant type I 5'-deiodinating activity. We used this homogenous cell line to verify that the type I enzyme was localized to the cytosolic surface of the basolateral membrane. Digitonin permeabilization increased affinity labeling of the enzyme 4-fold, and approximately 75% of the affinity label was incorporated into the 27-kDa substrate binding subunit. Affinity labeling of the type I enzyme in LLC-PK1 cells mimicked the affinity labeling of the substrate binding subunit of type I 5'-deiodinase in rat kidney (K?hrle, J., Rasmussen, U. B., Ekenbarger, D. M., Alex, S., Rokos, H., Hesch, R. D., and Leonard, J. L. (1990) J. Biol. Chem. 265, 6155-6163). Subcellular fractionation of LLC-PK1 cell homogenates showed that both affinity labeled and catalytically active type I enzyme were present on the cytosolic surface of the basolateral region of the renal cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号