首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have identified a human Rho protein, RhoE, which has unusual structural and biochemical properties that suggest a novel mechanism of regulation. Within a region that is highly conserved among small GTPases, RhoE contains amino acid differences specifically at three positions that confer oncogenicity to Ras (12, 59, and 61). As predicted by these substitutions, which impair GTP hydrolysis in Ras, RhoE binds GTP but lacks intrinsic GTPase activity and is resistant to Rho-specific GTPase-activating proteins. Replacing all three positions in RhoE with conventional amino acids completely restores GTPase activity. In vivo, RhoE is found exclusively in the GTP-bound form, suggesting that unlike previously characterized small GTPases, RhoE may be normally maintained in an activated state. Thus, amino acid changes in Ras that are selected during tumorigenesis have evolved naturally in this Rho protein and have similar consequences for catalytic function. All previously described Rho family proteins are modified by geranylgeranylation, a lipid attachment required for proper membrane localization. In contrast, the carboxy-terminal sequence of RhoE predicts that, like Ras proteins, RhoE is normally farnesylated. Indeed, we have found that RhoE in farnesylated in vivo and that this modification is required for association with the plasma membrane and with an unidentified cellular structure that may play a role in adhesion. Thus, two unusual structural features of this novel Rho protein suggest a striking evolutionary divergence from the Rho family of GTPases.  相似文献   

2.
Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt) are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD) 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.  相似文献   

3.
Glucocorticoid hormones stimulate adherens and tight junction formation in Con8 mammary epithelial tumor cells through a multistep process in which the membrane organization of structural apical junction proteins and tight junction sealing is controlled by specific signal transduction components. We have previously shown that dexamethasone stimulation of apical junction formation requires down-regulation of the small GTPase RhoA. Here we identified Rnd3/RhoE, a GTPase-deficient Rho family member and RhoA antagonist, as a key regulator of apical junction dynamics. Exogenously expressed Rnd3/RhoE co-localized with actin at the cell periphery and induced the localization of the adherens junction protein beta-catenin and the tight junction protein ZO-1 to sites of cell-cell contact, and led to the formation of highly sealed tight junctions. Treatment with glucocorticoids was not required to achieve complete apical junction remodeling. Consistent with Rnd3/RhoE acting as an antagonist of RhoA, expression of Rnd3/RhoE rescued the disruptive effects of constitutively active RhoA on apical junction organization. Our results demonstrate a new role for the Rho family member Rnd3/RhoE in regulating the assembly of the apical junction complex and tight junction sealing.  相似文献   

4.
5.
The Rnd proteins Rnd1, Rnd2, and Rnd3/RhoE are well known as key regulators of the actin cytoskeleton in various cell types, but they comprise a distinct subgroup of the Rho family in that they are GTP bound and constitutively active. Functional differences of the Rnd proteins in RhoA inhibition signaling have been reported in various cell types. Rnd1 and Rnd3 antagonize RhoA signaling by activating p190 RhoGAP, whereas Rnd2 does not. However, all the members of the Rnd family have been reported to bind directly to p190 RhoGAP and equally induce activation of p190 RhoGAP in vitro, and there is no evidence that accounts for the functional difference of the Rnd proteins in RhoA inhibition signaling. Here we report the role of the N-terminal region in signaling. Rnd1 and Rnd3, but not Rnd2, have a KERRA (Lys-Glu-Arg-Arg-Ala) sequence of amino acids in their N-terminus, which functions as the lipid raft-targeting determinant. The sequence mediates the lipid raft targeting of p190 RhoGAP correlated with its activation. Overall, our results demonstrate a novel regulatory mechanism by which differential membrane targeting governs activities of Rnd proteins to function as RhoA antagonists.  相似文献   

6.
Members of the Rho GTPase family regulate the organization of the actin cytoskeleton in response to extracellular growth factors. We have identified three proteins that form a distinct branch of the Rho family: Rnd1, expressed mostly in brain and liver; Rnd2, highly expressed in testis; and Rnd3/RhoE, showing a ubiquitous low expression. At the subcellular level, Rnd1 is concentrated at adherens junctions both in confluent fibroblasts and in epithelial cells. Rnd1 has a low affinity for GDP and spontaneously exchanges nucleotide rapidly in a physiological buffer. Furthermore, Rnd1 lacks intrinsic GTPase activity suggesting that in vivo, it might be constitutively in a GTP-bound form. Expression of Rnd1 or Rnd3/RhoE in fibroblasts inhibits the formation of actin stress fibers, membrane ruffles, and integrin-based focal adhesions and induces loss of cell–substrate adhesion leading to cell rounding (hence Rnd for “round”). We suggest that these proteins control rearrangements of the actin cytoskeleton and changes in cell adhesion.  相似文献   

7.
The Rnd proteins, which form a distinct sub-group of the Rho family of small GTP-binding proteins, have been shown to regulate the organization of the actin cytoskeleton in several tissues. In the brain, they participate in neurite extension, whereas in smooth muscle, they modulate contractility. Recent evidence has shown that Rnd3 (RhoE) is also involved in the regulation of cell-cycle progression and transformation, indicating that these proteins might have other, as yet unexplored roles.  相似文献   

8.
Rnd3/RhoE has two distinct functions, regulating the actin cytoskeleton and cell proliferation. This might explain why its expression is often altered in cancer and by multiple stimuli during development and disease. Rnd3 together with its relatives Rnd1 and Rnd2 are atypical members of the Rho GTPase family in that they do not hydrolyse GTP. Rnd3 and Rnd1 both antagonise RhoA/ROCK‐mediated actomyosin contractility, thereby regulating cell migration, smooth muscle contractility and neurite extension. In addition, Rnd3 has been shown to have a separate role in inhibiting cell cycle progression by reducing translation of cell cycle regulators, including cyclin D1 and Myc. We propose that Rnd3 could act as a tumour suppressor to limit proliferation, but when mutations bypass this activity of Rnd3, it can promote cancer invasion through its effects in the actin cytoskeleton.  相似文献   

9.
Clostridium botulinum C3 is the prototype of the family of the C3-like transferases that ADP-ribosylate exclusively RhoA, -B and -C. The ADP-ribose at Asn-41 results in functional inactivation of Rho reflected by disaggregation of the actin cytoskeleton. We report on a new C3-like transferase produced by a pathogenic Staphylococcus aureus strain. The transferase designated C3(Stau) was cloned from the genomic DNA. At the amino acid level, C3(Stau) revealed an identity of 35% to C3 from C. botulinum and Clostridium limosum exoenzyme, respectively, and of 78% to EDIN from S. aureus. In addition to RhoA, which is the target of the other C3-like transferases, C3(Stau) modified RhoE and Rnd3. RhoE was ADP-ribosylated at Asn-44, which is equivalent to Asn-41 of RhoA. RhoE and Rnd3 are members of the Rho subfamily, which are deficient in intrinsic GTPase activity and possess a RhoA antagonistic cell function. The protein substrate specificity found with recombinant Rho proteins was corroborated by expression of RhoE in Xenopus laevis oocytes showing that RhoE was also modified in vivo by C3(Stau) but not by C3 from C. botulinum. The poor cell accessibility of C3(Stau) was overcome by generation of a chimeric toxin recruiting the cell entry machinery of C. botulinum C2 toxin. The chimeric C3(Stau) caused the same morphological and cytoskeletal changes as the chimeric C. botulinum C3. C3(Stau) is a new member of the family of the C3-like transferases but is also the prototype of a subfamily of RhoE/Rnd modifying transferases.  相似文献   

10.
RhoE/Rnd3 is an atypical member of the Rho family of small GTPases. In addition to regulating actin cytoskeleton dynamics, RhoE is involved in the regulation of cell proliferation, survival, and metastasis. We examined RhoE expression levels during cell cycle and investigated mechanisms controlling them. We show that RhoE accumulates during G1, in contact-inhibited cells, and when the Akt pathway is inhibited. Conversely, RhoE levels rapidly decrease at the G1/S transition and remain low for most of the cell cycle. We also show that the half-life of RhoE is shorter than that of other Rho proteins and that its expression levels are regulated by proteasomal degradation. The expression patterns of RhoE overlap with that of the cell cycle inhibitor p27. Consistently with an involvement of RhoE in cell cycle regulation, RhoE and p27 levels decrease after overexpression of the F-box protein Skp2. We have identified a region between amino acids 231 and 240 of RhoE as the Skp2-interacting domain and Lys235 as the substrate for ubiquitylation. Based on our results, we propose a mechanism according to which proteasomal degradation of RhoE by Skp2 regulates its protein levels to control cellular proliferation.  相似文献   

11.
Rho family GTPases are central regulators of neuronal morphology. Recently, Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been identified as new members of Rho family GTPases. Of these, Rnd2 is specifically expressed in neurons in brain; however, the signaling pathways of Rnd2 are not known. Here we have performed a yeast two-hybrid screen using Rnd2 as a bait and identified a novel Rnd2-effector protein, expressed predominantly in brain. We named it Rapostlin (apostle of Rnd2). Rapostlin has two functional domains, Fer-CIP4 homology (FCH) domain at the amino terminus and SH3 (Src homology 3) domain at the carboxyl terminus. In in vitro binding assays, Rapostlin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner, and the Rnd2-binding domain of Rapostlin is localized between FCH and SH3 domains. Rapostlin directly binds to microtubules, and the amino-terminal region containing the FCH domain of Rapostlin is essential for this interaction. In PC12 cells, Rapostlin induces neurite branching in response to Rnd2, and at least the amino-terminal region of Rapostlin is necessary for this activity. Therefore, Rapostlin is the first effector of Rnd2, regulating neurite branch formation.  相似文献   

12.
13.
Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.  相似文献   

14.
RhoE, a p53 target gene, was identified as a critical factor for the survival of human keratinocytes in response to UVB. The Rho family of GTPases regulates many aspects of cellular behavior through alterations to the actin cytoskeleton, acting as molecular switches cycling between the active, GTP-bound and the inactive, GDP-bound conformations. Unlike typical Rho family proteins, RhoE (also known as Rnd3) is GTPase-deficient and thus expected to be constitutively active. In this study, we investigated the response of cultured human keratinocyte cells to UVB irradiation. RhoE protein levels increase upon exposure to UVB, and ablation of RhoE induction through small interfering RNA resulted in a significant increase in apoptosis and a reduction in the levels of the pro-survival targets p21, Cox-2, and cyclin D1, as well as an increase of reactive oxygen species levels when compared with control cells. These data indicate that RhoE is a pro-survival factor acting upstream of p38, JNK, p21, and cyclin D1. HaCat cells expressing small interfering RNA to p53 indicate that RhoE functions independently of its known associates, p53 and Rho-associated kinase I (ROCK I). Targeted expression of RhoE in epidermis using skin-specific transgenic mouse model resulted in a significant reduction in the number of apoptotic cells following UVB irradiation. Thus, RhoE induction counteracts UVB-induced apoptosis and may serve as a novel target for the prevention of UVB-induced photodamage regardless of p53 status.  相似文献   

15.
Rnd proteins function as RhoA antagonists by activating p190 RhoGAP   总被引:12,自引:0,他引:12  
BACKGROUND: The Rnd proteins Rnd1, Rnd2, and Rnd3 (RhoE) comprise a unique branch of Rho-family G-proteins that lack intrinsic GTPase activity and consequently remain constitutively "active." Prior studies have suggested that Rnd proteins play pivotal roles in cell regulation by counteracting the biological functions of the RhoA GTPase, but the molecular basis for this antagonism is unknown. Possible mechanisms by which Rnd proteins could function as RhoA antagonists include sequestration of RhoA effector molecules, inhibition of guanine nucleotide exchange factors, and activation of GTPase-activating proteins (GAPs) for RhoA. However, effector molecules of Rnd proteins with such properties have not been identified. RESULTS: Here we identify p190 RhoGAP (p190), the most abundant GAP for RhoA in cells, as an interactor with Rnd proteins and show that this interaction is mediated by a p190 region that is distinct from the GAP domain. Using Rnd3-RhoA chimeras and Rnd3 mutants defective in p190 binding, as well as p190-deficient cells, we demonstrate that the cellular effects of Rnd expression are mediated by p190. We moreover show that Rnd proteins increase the GAP activity of p190 toward GTP bound RhoA and, finally, demonstrate that expression of Rnd3 leads to reduced cellular levels of RhoA-GTP by a p190-dependent mechanism. CONCLUSIONS: Our results identify p190 RhoGAPs as effectors of Rnd proteins and demonstrate a novel mechanism by which Rnd proteins function as antagonists of RhoA.  相似文献   

16.
Several G proteins of the Rho family have been shown to be required for cytokinesis. The activity of these proteins is regulated by GTP exchange factors (GEFs), which stimulate GDP/GTP exchange, and by GTPase activating proteins (GAPs), which suppress activity by stimulating the intrinsic GTPase activity. The role of Rho family members during cytokinesis is likely to be determined by their spatial and temporal interactions with these factors. Here we focus on the role of the pebble (pbl) gene of Drosophila melanogaster, a RhoGEF that is required for cytokinesis. We summarise the evidence that the primary target of PBL is Rho1 and describe genetic approaches to elucidating the function of PBL and identifying other components of the PBL-activated Rho signalling pathway.  相似文献   

17.
Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase.  相似文献   

18.
Little is known of the intracellular machinery that controls the motility of newborn neurons. We have previously shown that the proneural protein Neurog2 promotes the migration of nascent cortical neurons by inducing the expression of the atypical Rho GTPase Rnd2. Here, we show that another proneural factor, Ascl1, promotes neuronal migration in the cortex through direct regulation of a second Rnd family member, Rnd3. Both Rnd2 and Rnd3 promote neuronal migration by inhibiting RhoA signaling, but they control distinct steps of the migratory process, multipolar to bipolar transition in the intermediate zone and locomotion in the cortical plate, respectively. Interestingly, these divergent functions directly result from the distinct subcellular distributions of the two Rnd proteins. Because Rnd proteins also regulate progenitor divisions and neurite outgrowth, we propose that proneural factors, through spatiotemporal regulation of Rnd proteins, integrate the process of neuronal migration with other events in the neurogenic program.  相似文献   

19.
Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD·Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD β3-β4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.  相似文献   

20.
Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein–protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295–304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many 1H(N), 13C, and 15N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N–H correlations in the 1H–15N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77–83 and residues 127–131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1 switch II region remained un-assigned, the switch I region could be more fully assigned compared to Cdc42 and Rac1. The NMR assignment and structure analysis reported here provides a robust basis for future study of the binding between Rnd1 and other proteins, as well as for further studies of the molecular function of this unusual GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号