首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential use of oxidative stress products as disease markers and progression is an important aspect of biomedical research. In the present study, the quantification of urine 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) concentration has been used to express the oxidation status of hypertensive subjects.

8-oxo-dG has been simultaneously isolated and assayed in nuclear (nDNA) and mitochondrial DNA (mtDNA). In addition, oxidative stress of mononuclear cells has been estimated by means of GSH and GSSG levels and GSSG/GSH ratio in hypertensive subjects before and after antihypertensive treatment. It is shown that oxidative stress decreases significantly in hypertensive patients after treatment the effect being accompanied by reduction of their blood pressure.

A significant correlation is observed comparing the yield of urine 8-oxo-dG and that isolated from mitochondria DNA. Moreover, urinary excretion of 8-oxo-dG also correlates with the GSSG/GSH ratio of cells. Conclusion: urine 8-oxo-dG assay is a good marker for monitoring oxidative stress changes in hypertensives.  相似文献   

2.
We determined the mitochondrial membrane status, presence of reactive oxygen species (ROS), and oxidative DNA adduct formation in normal human oral keratinocytes (NHOK) during senescence. The senescent cells showed accumulation of intracellular ROS and 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG), a major oxidative DNA adduct. Exposure of cells to H2O2 induced 8-oxo-dG accumulation in cellular DNA, which was rapidly removed in replicating NHOK. However, the 8-oxo-dG removal activity was almost completely abolished in the senescing culture. Both replicating and senescing NHOK expressed readily detectable 8-oxo-dG DNA glycosylase (hOGG1), the enzyme responsible for glycosidic cleavage of 8-oxo-dG. After exposure to H2O2, however, the intranuclear level of the hOGG1-alpha isoform was decreased in senescing but not in replicating NHOK. These results indicated that senescing NHOK accumulated oxidative DNA lesions in part due to increased level of endogenous ROS and impaired intranuclear translocation of hOGG1 enzyme upon exposure to oxidative stress.  相似文献   

3.
This study aimed to determine the effects of melatonin on irradiation-induced apoptosis and oxidative stress in the brainstem region of Wistar rats. Therefore, the animals underwent whole-brain X-radiation with a single dose of 25 Gy in the presence or absence of melatonin pretreatment at a concentration of 100 mg/kg BW. The rats were allocated into four groups (10 rats in each group): namely, vehicle control (VC), 100 mg/kg of melatonin alone (MLT), irradiation-only (RAD), and irradiation plus 100 mg/kg of melatonin (RAM). An hour before irradiation, the animals received intraperitoneal (IP) melatonin and then were killed after 6 hr, followed by measurement of nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and total antioxidant capacity (TAC) in the brainstem region. Furthermore, the western blot analysis technique was performed to assess the caspase-3 expression level. Results showed significantly higher MDA and NO levels in the brainstem tissues for the RAD group when compared with the VC group (p < .001). Moreover, the irradiated rats exhibited a significant decrease in the levels of CAT, SOD, GPx, and TAC (p < .01, p < .001, p < .001, and p < .001, respectively) in comparison to the VC group. The results of apoptosis assessment revealed that the expression level of caspase-3 significantly rose in the RAD group in comparison with the VC group (p < .001). Pretreatment with melatonin ameliorated the radiation-induced adverse effects by decreasing the MDA and NO levels (p < .001) and increasing the antioxidant enzyme activities (p < .001). Consequently, the caspase-3 protein expression level in the RAM group showed a significant reduction in comparison with the RAD group (p < .001). In conclusion, melatonin approximately showed a capacity for neuroprotective activity in managing irradiation-induced oxidative stress and apoptosis in the brainstem of rats; however, the use of melatonin as a neuroprotective agent in humans requires further study, particularly clinical trials.  相似文献   

4.
Abstract

The impact of classic cardiovascular risk factors on oxidative stress status in a high-risk cardiovascular Mediterranean population of 527 subjects was estimated. Oxidative stress markers (malondialdehyde, 8-oxo-7′8′-dihydro-2′-deoxyguanosine, oxidized/reduced glutathione ratio) together with the activity of antioxidant enzyme triad (superoxide dismutase, catalase, glutathione peroxidase) were analysed in circulating mononuclear blood cells. Malondialdehyde, oxidized glutathione and the ratio of oxidized to reduced glutathione were significantly higher while catalase and glutathione peroxidase activities were significantly lower in high cardiovascular risk participants than in controls. Statistically significant differences were obtained after additional multivariate control for sex, age, obesity, diabetes, lipids and medications. Among the main cardiovascular risk factors, hypertension was the strongest determinant of oxidative stress in high risk subjects studied at a primary prevention stage.  相似文献   

5.
Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG), as a measure of oxidative stress, was measured before and after 12 weeks of progressive resistance strength training in 8 healthy elderly (65–80 yr) and eight healthy young (22–30 yr) men and women, and in eight adults (25–65 yr) with rheumatoid arthritis (RA).Training subjects exercised at 80% of their one-repetition maximum and performed eight repetitions per set, three sets per session, on a twice-weekly basis. 8-OHdG was measured at baseline and follow-up (at least 24 hr after the last exercise session) in the RA and elderly subject groups, and at baseline only in young subjects.Baseline 8-OHdG levels were greater among subjects with RA compared to both healthy young (P < 0.001) and elderly (P < 0.05) subjects. There were no changes in 8-OHdG levels in either RA or elderly subjects as a result of the strength training intervention.These results suggest that subjects with RA have higher levels of oxidative stress than young and elderly healthy individuals. Furthermore, there is no change in oxidative stress, measured by urinary 8-OHdG, in elderly healthy individuals or in subjects with RA after a 12-week strength training intervention.  相似文献   

6.
The aim of the present study was to evaluate the oxidative status in healthy full-term children and piglets. Urinary excretion of 8-oxoGua (8-oxoguanine) and 8-oxodG (8-oxo-2'-deoxyguanosine) were determined using HPLC/GS/MS methodology and concentrations of vitamins A, C and E with HPLC technique. The levels of 8-oxoGua in urine samples were about 7-8 times higher in newborn children and piglets when compared with the level of adult subjects, while in the case of 8-oxodG the difference was about 2.5 times. The levels of vitamin C and E in umbilical cord blood of newborn children significantly depend on the concentration of these compounds in their mother's blood. However, the values of vitamin C in human's cord blood were about 2-times higher than in respective mother blood, while the level of vitamin E showed an opposite trend. The results suggest that: (i) healthy, full-term newborns are under potential oxidative stress; (ii) urinary excretion of 8-oxoGua and 8-oxodG may be a good marker of oxidative stress in newborns; and (iii) antioxidant vitamins, especially vitamin C, play an important role in protecting newborns against oxidative stress.  相似文献   

7.
The aim of the present study was to evaluate the oxidative status in healthy full-term children and piglets. Urinary excretion of 8-oxoGua (8-oxoguanine) and 8-oxodG (8-oxo-2′-deoxyguanosine) were determined using HPLC/GS/MS methodology and concentrations of vitamins A, C and E with HPLC technique. The levels of 8-oxoGua in urine samples were about 7–8 times higher in newborn children and piglets when compared with the level of adult subjects, while in the case of 8-oxodG the difference was about 2.5 times. The levels of vitamin C and E in umbilical cord blood of newborn children significantly depend on the concentration of these compounds in their mother's blood. However, the values of vitamin C in human's cord blood were about 2-times higher than in respective mother blood, while the level of vitamin E showed an opposite trend. The results suggest that: (i) healthy, full-term newborns are under potential oxidative stress; (ii) urinary excretion of 8-oxoGua and 8-oxodG may be a good marker of oxidative stress in newborns; and (iii) antioxidant vitamins, especially vitamin C, play an important role in protecting newborns against oxidative stress.  相似文献   

8.
Many selenoorganic compounds play an important role in biochemical processes and act as antioxidants, enzyme inhibitors, or drugs. The effects of five new synthesized selenoorganic compounds (2-(5-chloro-2-pyridyl)-7-azabenzisoselenazol-3(2H)-one; 2-phenyl-7-azabenzisoselenazol-3(2H)-one; 2-(pyridyl)-7-azabenzisoselenazol-3(2H)-one; 7-azabenzisoselenazol-3(2H)-one; bis(2-aminophenyl) diselenide) on oxidative changes in human blood platelets and in plasma were studied in vitro and compared with those of ebselen, a well known antioxidant. Our studies demonstrated that bis(2-aminophenyl) diselenide has distinctly protective effects against oxidative stress in blood platelets and in plasma. It might have greater biological relevance and stronger pharmacological effects than ebselen.  相似文献   

9.
Radiotherapy is one of the most effective modalities for treatment of neoplastic diseases. Radiation damage is to a large extent caused by overproduction of reactive oxygen species. To improve the therapeutic index, identifying effective substances for prevention or treatment of postirradiation intestinal and bone marrow injury should be prompted. This study was designed to evaluate the protective effects of cimetidine on the in rats exposed to γ-irradiation (5 Gy) and exploring the B-cell lymphoma 2 (Bcl2)/Bcl2 associated X (bax) pathway as a probable underlying mechanism. Eighteen adult male rats were randomly grouped into three: control, untreated irradiated rats, and irradiated rats pretreated with cimetidine. Seven days postirradiation the rats were culled, the bone marrow (BM) and jejunum tissue samples were collected for biochemical, histological, and immunohistological evaluation of BM cell count (BMCs), intestinal fibrosis, oxidative stress, tumor necrosis factor-α, Bcl2, and Bax. Cimetidine pretreatment significantly reversed the loss of BMCs, intestinal lining destruction, and fibrosis seen in the untreated irradiated rats and significantly decreased the underlying oxidative stress, inflammation, and Bax/Bcl2 ratio. There was a significant differential correlation between Bax/Bcl2 ratio, tissue oxidative stress level, and tissue injury. Cimetidine represents a very promising radioprotective agent with a potential differential beneficial effect on both cancer cells (inducing apoptosis) as previously proved through different studies and adjacent healthy cells (providing radioprotection via inhibiting apoptosis) as clearly demonstrated through this study, via its antioxidant effect and subsequent regulation of type 2 apoptotic pathway through modulation of Bax/Bcl2 ratio.  相似文献   

10.
Abstract

Exercise-induced changes in p66Shc-dependent signaling pathway are still not fully understood. The p66Shc protein is one of the key players in cell signaling, particularly in response to oxidative stress. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the phosphorylation of p66Shc as well as the induction of mitochondrial and cellular oxidative stress in rat hearts.

Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their hearts were removed immediately for experiments.

The exercise protocol caused increased levels of the following oxidative stress parameters in cardiac cells: DNA damage, protein carbonyls, and lipid dienes. There was also increased phosphorylation of p66Shc without any alterations in Akt and extracellular signal-regulated kinases. Changes in the ferritin L levels and the L to H subunit ratio were also observed in the exercised hearts compared with the control hearts. Despite increased phosphorylation of p66Shc, no significant increase was observed in either mitochondrial H2O2 release or mitochondrial oxidative stress markers. Regardless of the changes in phosphorylation of p66Shc, the antioxidant enzyme activities (superoxide dismutase and catalase) and anti-apoptotic (Bcl2), and pro-apoptotic (Bax) protein levels were not affected by prolonged swimming. Further studies are required to investigate whether p66Shc phosphorylation is beneficial or detrimental to cardiac cells after exercise cessation.  相似文献   

11.
《Free radical research》2013,47(10):1238-1248
Abstract

Hepatocyte growth factor (HGF) is a potential therapeutic agent for diabetic nephropathy. The mechanisms for the renoprotective effect of HGF have been studied extensively, but antioxidant signalling of HGF in diabetic nephropathy is minimally understood. Our observations indicated that a nitrated guanine nucleotide, 8-nitroguanosine 3′5′-cyclic monophosphate (8-nitro-cGMP) diminished in high glucose (HG)-treated rat mesangial cells (RMC). However, HGF obviously lifted intracellular 8-nitro-cGMP level, which was accompanied by remarkably suppressed oxidative stress as evidenced by decreased reactive oxygen species and malondialdehyde levels and elevated glutathione level. Inhibitor of soluble guanylyl cyclase (sGC) NS-2028 and inhibitor of nitric oxide synthase (NOS) l-NMMA could block increased 8-nitro-cGMP level and repress oxidative stress by HGF. Accordingly, these two inhibitors abrogated HGF-induced nuclear accumulation of NF-E2 related factor 2 (Nrf2) and up-regulation of Nrf2 downstream glutamate-cysteine ligase catalytic subunit (GCLC) expression. In conclusion, HGF ameliorated HG-mediated oxidative stress in RMC at least in part by enhancing nitric oxide and subsequent 8-nitro-cGMP production.  相似文献   

12.
《Free radical research》2013,47(12):1159-1166
Abstract

Various oxidative stress markers have been measured to evaluate the status of heart failure (HF). However, the relationships between these markers and the aetiology of HF have not been fully investigated. This study compared 8-hydroxy-2′-deoxyguanosine (8-OHdG) and biopyrrins levels in patients with ischemic and non-ischemic HF. Study subjects were divided into a coronary artery disease (CAD) group (n=70), a non-CAD group (n=61) and a control group (n=33). In the CAD group, 8-OHdG and biopyrrins levels increased with the severity of the New York Heart Association (NYHA) functional class and log BNP levels correlated with 8-OHdG and biopyrrins levels. However, non-CAD patients with NYHA class III/IV had significantly lower 8-OHdG levels than CAD patients with NYHA class III/IV and the levels did not correlate with log BNP levels. In the CAD group, 8-OHdG levels reflected the severity of atherosclerosis. These results indicate that the properties of oxidative stress markers should be carefully taken into consideration for the assessment of HF status.  相似文献   

13.
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.  相似文献   

14.
Oxidative stress may play a crucial role in age-related neurodegenerative disorders. Here, we examined the ability of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), to reverse the cognitive deficits found in the SAMP8 mouse. By 12 months of age, this strain develops elevated levels of Abeta and severe deficits in learning and memory. We found that 12-month-old SAMP8 mice, in comparison with 4-month-old mice, had increased levels of protein carbonyls (an index of protein oxidation), increased TBARS (an index of lipid peroxidation) and a decrease in the weakly immobilized/strongly immobilized (W/S) ratio of the protein-specific spin label MAL-6 (an index of oxidation-induced conformational changes in synaptosomal membrane proteins). Chronic administration of either LA or NAC improved cognition of 12-month-old SAMP8 mice in both the T-maze footshock avoidance paradigm and the lever press appetitive task without inducing non-specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood-brain barrier and accumulated in the brain. Furthermore, treatment of 12-month-old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.  相似文献   

15.
We investigated whether acute iron intoxication causes oxidative DNA damage, measured in terms of 7-hydro-8-oxo-2′-deoxyguanosine, 8-oxodG, in nuclear DNA in testes and epididymal sperm cells in vivo and in vitro in rats. In addition, we investigated levels of the modified nucleoside in liver and kidney and measured its urinary excretion.

Sperm cells were isolated from the epididymides and the testes cells were isolated after homogenisation. In vitro, the sperm and testes cells were incubated with increasing concentrations of FeCl2 ranging from 0 to 600 μM. The median (range) levels of 8-oxodG/105 dG in the epididymal sperm cells increased from 0.48 (0.42–0.90) to 15.1 (11.4–17.6) (p < 0.05), whereas the level rose from 0.63 (0.22–0.81) to 8.8 (4.5–11.6) (p < 0.05) at 0 and 600 μM, respectively, in the testicular cells.

In vivo groups of 7–8 rats received 0, 200 or 400 mg iron/kg as dextran i.p. After 24h, epididymal sperm cells, testes, kidneys and liver were collected for analysis. Kidney and sperm DNA showed a significant increase in 8-oxodG in the iron-treated animals. The median (range) values of the 8-oxodG/105 dG in the epididymal sperm cells rose from 0.66 (0.38–1.09) to 1.12 (0.84–5.88) (p < 0.05) at 0 and 400 mg iron/kg, respectively, whereas the values in the testes and liver showed no significant change. In the kidneys the 8-oxodG/105 dG median (range) values were 0.98 (0.73–1.24), 1.21 (1.13–1.69) and 1.34 (1.12–1.66) after 0, 200 and 400 mg iron/kg, respectively (p < 0.05).

The 8-oxodG-excretion rate was measured in 24 h urine before and after iron treatment. The rate of urinary 8-oxodG excretion increased from 129 (104–179) pmol/24 h before treatment to 147 (110–239) pmol/24h after treatment in the group receiving 400 mg iron/kg (p < 0.05).

The results indicate that acute iron intoxication may increase oxidative damage to sperm and kidney DNA.  相似文献   

16.
为探讨木犀草素-泊洛沙姆纳米制剂对体内外氧化应激损伤的改善作用。实验使用泊洛沙姆(F127)包裹木犀草素制备纳米胶束并对其进行表征,采用透析法评价其体外释放行为。建立体外H_2O_2诱导PC12细胞氧化应激损伤模型,对各组细胞进行活性检测和细胞骨架染色。利用western-blot检测各组细胞中MAPK的磷酸化水平。通过中动脉线栓阻断法建立大鼠右侧大脑缺血再灌注损伤模型(MCAO)用于评价其体内氧化应激损伤,测定各组大鼠脑梗死体积、脑含水量及血浆中氧化应激水平(SOD、MDA、GSH-Px)。最后对木犀草素纳米制剂在大鼠体内的药代动力学进行研究。结果显示,木犀草素纳米制剂多呈球形,粒径均一,载药量和包封率较高,且木犀草素可以缓慢地从胶束中释放出来。体内外抗氧化应激作用表明,木犀草素纳米制剂可显著提高细胞存活率,降低p-JNK、p-p38、p-ERK表达(P<0.01),且细胞骨架清晰呈网状结构。同时木犀草素纳米制剂可显著降低大鼠脑梗死体积(P<0.05),上调SOD、GSH-Px水平(P<0.01),下调MDA水平(P<0.01),显著提高了其抗氧化应激损伤作用。其机制与木犀草素纳米制剂延长了其体内循环时间,提高了血药浓度,通过抑制MAPK信号转导途径的激活有效减少了细胞凋亡有关。  相似文献   

17.
UV-induced DNA damage can lead to melanoma, the most dangerous form of skin cancer. Understanding the mechanisms employed by melanocytes to protect against UV is therefore a key issue. In melanocytes, catalase is the main enzyme responsible for degrading hydrogen peroxide and we have previously shown that that low basal levels of catalase activity are associated with the light phototype in in vitro and ex vivo models. Here we investigate the possible correlation between its activity and melanogenesis in primary cultures of human melanocytes. We show that while the total melanin concentration is directly correlated to the level of pigmentation, the more the degree of pigmentation increased, the lower the proportion of pheomelanin present. Moreover, in human melanocytes in vitro, catalase-specific mRNA, protein and enzymatic activity were all directly correlated with total cellular melanin content. We also observed that immediately after a peroxidative treatment, the increase in reactive oxygen species was inversely associated with pigmentation level. Darkly pigmented melanocytes therefore possess two protective strategies represented by melanins and catalase activity that are likely to act synergistically to counteract the deleterious effects of UV radiation. By contrast, lightly pigmented melanocytes possess lower levels of melanogenic and catalase activity and are therefore more susceptible to accumulate damage after UV exposition.  相似文献   

18.
19.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

20.
Gender differences are present in many diseases and are especially prevalent in cardiovascular disease. Males tend to suffer from myocardial infarctions earlier than females, and a woman's risk of cardiovascular disease increases after menopause, suggesting a cardio‐protective role of estrogen. However, hormone replacement therapy did not decrease the risk of cardiovascular disease in post‐menopausal women; thus, other mechanisms may be involved besides estrogen. Oxidative stress plays an important role in the development of cardiovascular diseases such as coronary artery disease. Gender is also associated with differences in oxidative stress. Under physiological conditions, females appear to be less susceptible to oxidative stress. This may be due to the antioxidant properties of estrogen, gender differences in NADPH‐oxidase activity or other mechanism(s) yet to be defined. This review strives to discuss gender differences in general terms followed by a more detailed examination of gender differences with oxidative stress and various associated diseases and the possible mechanisms underlying these differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号