首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical mutagenesis has been used to produce mutants of Acetobacter xylinum NRRL B42 that are cellulose-negative and that produce variants of the acetan structure deficient in the side-chain sugar residues. The product of A. xylinum strain CR1/4 has been shown to possess a tetrasaccharide repeat unit with the side chain terminating in glucuronic acid. X-ray diffraction studies of oriented fibres suggest that the polysaccharide CR1/4 forms a fivefold helix with a pitch of 4.8 nm. Light-scattering studies on CR1/4 solutions suggest a molecular weight of 1.2 × 106 with radii of gyration values of 86 nm (aqueous solution) and 67 nm (0.1 NaCl solution). The magnitude of the measured radii of gyration and the shape of the Holtzer plots suggest that CR1/4 can be described as a stiff coil. Preliminary differential scanning calorimetry data show melting behaviour consistent with order-disorder transitions of a charged helical structure. Rheological studies have revealed new synergistic interactions of CR1/4 with locus bean gum. Comparative studies of acetan and CR1/4 show that decreasing the length of the side chain enhances the solution viscosity.  相似文献   

2.
Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience.  相似文献   

3.
Eukaryotic cells contain three cytoskeletal filament systems that exhibit very distinct assembly properties, supramolecular architectures, dynamic behaviour and mechanical properties. Microtubules and microfilaments are relatively stiff polar structures whose assembly is modulated by the state of hydrolysis of the bound nucleotide. In contrast, intermediate filaments (IFs) are more flexible apolar structures assembled from a approximately 45 nm long coiled-coil dimer as the elementary building block. The differences in flexibility that exist among the three filament systems have been described qualitatively by comparing electron micrographs of negatively stained dehydrated filaments and by directly measuring the persistence length of F-actin filaments (approximately 3-10 microm) and microtubules (approximately 1-8 mm) by various physical methods. However, quantitative data on the persistence length of IFs are still missing. Toward this goal, we have carried out atomic force microscopy (AFM) in physiological buffer to characterise the morphology of individual vimentin IFs adsorbed to different solid supports. In addition, we compared these images with those obtained by transmission electron microscopy (TEM) of negatively stained dehydrated filaments. For each support, we could accurately measure the apparent persistence length of the filaments, yielding values ranging between 0.3 microm and 1 microm. Making simple assumptions concerning the adsorption mechanism, we could estimate the persistence length of an IF in a dilute solution to be approximately 1 microm, indicating that the lower measured values reflect constraints induced by the adsorption process of the filaments on the corresponding support. Based on our knowledge of the structural organisation and mechanical properties of IFs, we reason that the lower persistence length of IFs compared to that of F-actin filaments is caused by the presence of flexible linker regions within the coiled-coil dimer and by postulating the occurrence of axial slipping between dimers within IFs.  相似文献   

4.
Maurstad G  Stokke BT 《Biopolymers》2004,74(3):199-213
The compaction of the semiflexible polysaccharide xanthan with selected multi- and polyvalent cations was studied. Polyelectrolyte complexes prepared at concentrations of 1-2 microg/ml were observed by tapping mode atomic force microscopy. High-molecular-weight xanthan compacted with chitosan yields a blend of mainly toroidal and metastable structures and a small fraction of rod-like species. Polyelectrolyte complexes of xanthan with polyethylenimine and trivalent chromium yielded similar structures or alternatively less well packed species. Racquet-type morphologies were identified as kinetically trapped states occurring on the folding path toward the energetically stable state of the toroids. Thermal annealing yielded a shift of the distribution of xanthan-chitosan morphologies toward this stable state. Ensembles of toroidal and rod-like morphologies of the xanthan-chitosan structures, collected using an asphericity index, were analyzed. The mean height of the toroids increased upon heating, with a selective increase in the height range above 2 nm. It is suggested that the observed metastable structures are formed from the high-molecular-weight fraction of xanthan and that these are driven toward the toroidal state, being a low-energy state, following annealing. Considered a model system for condensation of semiflexible polymers, the compaction of xanthan by chitosan captures the system at various stages in the folding toward a low-energy state and thus allows experimental analyses of these intermediates and their evolution.  相似文献   

5.
Isolated chlorosomes of several species of filamentous anoxygenic phototrophic bacteria (FAPB) and green sulfur bacteria (GSB) were examined by atomic force microscopy (AFM) to characterize their topography and biometry. Chlorosomes of Chloroflexus aurantiacus, Chloronema sp., and Chlorobium (Chl.) tepidum exhibited a smooth surface, whereas those of Chl. phaeobacteroides and Chl. vibrioforme showed a rough one. The potential artifactual nature of the two types of surfaces, which may have arisen because of sample manipulation or AFM processing, was ruled out when AFM images and transmission electron micrographs were compared. The difference in surface texture might be associated with the specific lipid and polypeptide composition of the chlorosomal envelope. The study of three-dimensional AFM images also provides information about the size and shape of individual chlorosomes. Chlorosomal volumes ranged from ca. 35000 nm3 to 247000 nm3 for Chl. vibrioforme and Chl. phaeobacteroides, respectively. The mean height was about 25 nm for all the species studied, except Chl. vibrioforme, which showed a height of only 14 nm, suggesting that GSB have 1–2 layers of bacteriochlorophyll (BChl) rods and GFB have 4. Moreover, the average number of BChl molecules per chlorosome was estimated according to models of BChl rod organisation. These calculations yielded upper limits ranging from 34000 BChl molecules in Chl. vibrioforme to 240000 in Chl. phaeobacteroides, values that greatly surpass those conventionally accepted.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
Atomic force microscopy has been used to characterise populations of extracted water-soluble wheat endosperm arabinoxylans. The adsorbed molecules are extended structures with an estimated Kuhn statistical segment length of 128 nm, suggesting that they adopt an ordered helical structure. However, estimates of the molecular weight distribution, coupled with size exclusion data, suggest that, in solution, the polysaccharides behave as semi-flexible coils, with a Kuhn length of 16 nm. These data imply that adsorption of the arabinoxylan structures onto mica promotes formation of the helical structure. Adoption of this ordered structure is fortunate because it has permitted characterisation of branching observed in a small proportion (approximately 15%) of the population of otherwise linear molecules. The degree of branching has been found to increase with the contour length of the molecules. Degradation of the polysaccharides with xylanase has been used to confirm that both the backbone and branches are based on beta-(1-->4) linked D-xylopyranosyl residues.  相似文献   

7.
KirBac3.1 belongs to a family of transmembrane potassium (K+) channels that permit the selective flow of K-ions across biological membranes and thereby regulate cell excitability. They are crucial for a wide range of biological processes and mutations in their genes cause multiple human diseases. Opening and closing (gating) of Kir channels may occur spontaneously but is modulated by numerous intracellular ligands that bind to the channel itself. These include lipids (such as PIP2), G-proteins, nucleotides (such as ATP) and ions (e.g. H+, Mg2+, Ca2+). We have used high-resolution atomic force microscopy (AFM) to examine KirBac3.1 in two different configurations. AFM imaging of the cytoplasmic surface of KirBac3.1 embedded in a lipid bilayer has allowed visualization of the tetrameric assembly of the ligand-binding domain. In the absence of Mg2+, the four subunits appeared as four protrusions surrounding a central depression corresponding to the cytoplasmic pore. They did not display 4-fold symmetry, but formed a dimer-of-dimers with 2-fold symmetry. Upon addition of Mg2+, a marked rearrangement of the intracellular ligand-binding domains was observed: the four protrusions condensed into a single protrusion per tetramer, and there was an accompanying increase in protrusion height. The central cavity within the four intracellular domains also disappeared on addition of Mg2+, indicating constriction of the cytoplasmic pore. These structural changes are likely transduced to the transmembrane helices, which gate the K+ channel. This is the first time AFM has been used as an interactive tool to study K+ channels. It has enabled us to directly measure the conformational changes in the protein surface produced by ligand binding.  相似文献   

8.
Muirhead  D.  Lead  J. R. 《Hydrobiologia》2003,494(1-3):65-69
Atomic force microscopy (AFM) in tapping mode was used to determine the conformation of humic substances and aquatic colloids from rivers in an urban catchment in the West Midlands, U.K. Humic macromolecules were shown to have a size of about 1–3 nm in agreement with the literature, indicating that the preparation methods and the AFM were both performing satisfactorily. Three types of natural aquatic colloids were observed by AFM. Firstly, a surface coating about 1–5 nm thick, likely composed of organic and oxide material flattened by drying and interaction with the AFM tip. Secondly, small irregular, globular material between 1 and 70 nm in size, again most likely made of oxide and organic material. Lastly, fibrillar material was present which was 1–10 nm in diameter and 10–1000 nm in length. Most likely this material was microbially produced (muco-) polysaccharides. Size distributions of colloids from all samples, regardless of sample site and sample preparation, indicated colloids with a fairly low polydispersity and with particle numbers dominated by material <10 nm.  相似文献   

9.
A novel method for the covalent attachment of erythrocytes to glass microscope coverslips that can be used to image intact cells and the cytoplasmic side of the cell membrane with either solid or liquid mode atomic force microscopy (AFM) is described. The strong binding of cells to the glass surface is achieved by the interaction of cell membrane carbohydrates to lectin, which is bound to N-5-azido-2-nitrobenzoyloxysuccinimide (ANBNOS)-coated coverslips (1). The effectiveness of this method is compared with the other commonly used methods of immobilizing intact erythrocytes on glass coverslips for AFM observations. Experimental conditions of AFM imaging of biologic tissue are discussed, and typical topographies of the extracellular and the cytoplasmic surfaces of the plasma membrane in the dry state and in the liquid state are presented. Comparison of the spectrin network of cell age-separated erythrocytes has demonstrated significant loss in the network order in older erythrocytes. The changes are quantitatively described using the pixel height histogram and window size grain analysis.  相似文献   

10.
11.
12.
13.
Seven P2X purinergic receptor subunits have been identified: P2X1–P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.  相似文献   

14.
15.
The investigation of Protein A and antibody adsorption on surfaces in a biological environment is an important and fundamental step for increasing biosensor sensitivity and specificity. The atomic force microscope (AFM) is a powerful tool that is frequently used to characterize surfaces coated with a variety of molecules. We used AFM in conjunction with scanning electron microscopy to characterize the attachment of protein A and its subsequent binding to the antibody and Salmonella bacteria using a gold quartz crystal. The rms roughness of the base gold surface was determined to be approximately 1.30 nm. The average step height change between the solid gold and protein A layer was approximately 3.0 +/- 1.0 nm, while the average step height of the protein A with attached antibody was approximately 6.0 +/- 1.0 nm. We found that the antibodies did not completely cover the protein A layer, instead the attachment follows an island model. Salt crystals and water trapped under the protein A layer were also observed. The uneven adsorption of antibodies onto the biosensor surface might have led to a decrease in the sensitivity of the biosensor. The presence of salt crystals and water under the protein A layer may deteriorate the sensor specificity. In this report, we have discussed the application and characterization of protein A bound to antibodies which can be used to detect bacterial and viral pathogens.  相似文献   

16.
Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self‐sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high‐resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self‐sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The organization of the higher order structure of chromatin in chicken erythrocytes has been examined with tapping-mode scanning force microscopy under conditions close to their native envirinment.Reproducible highresolution AFM images of chromatin compaction at several levels can be demonstrated.An extended beads-on-astring (width of - 15-20nm,height of - 2-3nm for each individual nucleosome) can be consistently observed.Furthermore,superbeade (width of - 40nm,height of - 7nm) are demonstrated.Visualization of the solenoid conformation at the level of 30nm chromatin fiber is attained either by using AFM or by using electron microscopy.In addition,tightly coiled chromatin fibers (- 50-60nm and - 90-110nm) can be revealed.Our data suggest that the chromatin in the interphase nucleus of chicken erythrocyte represents a high-order conformation and AFM provides useful high-resolution structural information concerning the folding pattern of interphase chromatin fibers.  相似文献   

18.
Two biopolymers produced from submerged culture of edible mushrooms were directly observed by atomic force microscopy. Biopolymers were deposited on mica from dilute aqueous solution and imaged in air through a thin layer of adsorbed water and their hydrated structures were observed by a tapping mode. A single biopolymer molecule obtained from Cordyceps militaris was typical of a rod-like structure with bending point, which can form intra- and inter-molecular supercoils. In contrast, the image for low molecular weight biopolymer from Paecilomyces sinclarii is typical of a branched structure in which more extensive interaction leads to the formation of network-like matrix.  相似文献   

19.
The tumor suppressor p53 interacts with the redox copper protein Azurin (AZ) forming a complex which is of some relevance in biomedicine and cancer therapy. To obtain information on the spatial organization of this complex when it is immobilized on a substrate, we have used tapping mode‐atomic force microscopy (TM‐AFM) imaging combined with computational docking. The vertical dimension and the bearing volume of the DNA binding domain (DBD) of p53, anchored to functionalized gold substrate through exposed lysine residues, alone and after deposing AZ, have been measured by TM‐AFM. By a computational docking approach, a three‐dimensional model for the DBD of p53, before and after addition of AZ, have been predicted. Then we have calculated the possible arrangements of these biomolecular systems on gold substrate by finding a good agreement with the related experimental distribution of the height. The potentiality of the approach combining TM‐AFM imaging and computational docking for the study of biomolecular complexes immobilized on substrates is briefly discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Estradiol-displayed bioaffinity beads binding to the anti-estradiol antibody attached via the protein A-coated mica surface were examined by atomic force microscopy (AFM). The amount of specifically bound beads on the surface was directly proportional to the concentration of free estradiol in solution. Estradiol from 10 ng ml–1 to 10 g ml–1 could be determined. This suggested that direct counting of bioaffnity beads by AFM can be used to detect specific ligand for the target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号