首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Mycobacterium phlei, fatty acid unsaturation increased with decreasing temperature. The 10-hexadecenoic acid content increased as the temperature was reduced from 35°C to 26–20°C. At lower temperatures tuberculostearic acid decreased while oleic and linoleic acids increased, the latter being found in M. phlei for the first time. Concomitantly palmitic acid content decreased, and the 6- and 9-hexadecenoic acids increased slightly on reducing the temperature from 35 to 10°C. Thus, down to 26–20°C palmitic acid was mainly replaced by 10-hexadecenoic acid. From this range down to 10°C, palmitic and tuberculostearic acids were replaced by oleic and linoleic acids. Consequently, fatty acid branching decreased and mean chain length increased, as the temperature was reduced. These observations support the view that regulation of membrane fatty acid composition is part of microbial temperature adaptation, and that themechanism behind the responses might be more complex than generally believed.Abbreviations ACP acyl carrier protein - FAS I (Type I) fatty acid synthetase I - FAS II (Type II) fatty acid synthetase II - MGLP methylglucose containing lipopolysaccharide - MMP methylmannose containning polysaccharide  相似文献   

2.
Effects of fatty acids on BK channels in GH(3) cells   总被引:6,自引:0,他引:6  
Ca2+-activated K+ (BK) channels inGH3 cells are activated by arachidonic acid (AA). Becausecytosolic phospholipase A2 can produce other unsaturatedfree fatty acids (FFA), we examined the effects of FFA on BK channelsin excised patches. Control recordings were made at several holdingpotentials. The desired FFA was added to the bath solution, and thevoltage paradigm was repeated. AA increased the activity of BK channelsby 3.6 ± 1.6-fold. The cis FFA, palmitoleic, oleic,linoleic, linolenic, eicosapentaenoic, and the triple bond analog ofAA, eicosatetraynoic acid, all increased BK channel activity, whereasstearic (saturated) or the trans isomers elaidic,linolelaidic, and linolenelaidic had no effect. The cisunsaturated FFA shifted the open probability vs. voltage relationshipsto the left without a change in slope, suggesting no change in thesensitivity of the voltage sensor. Measurements of membrane fluidityshowed no correlation between the change of membrane fluidity and thechange in BK channel activation. In addition, AA effects on BK channelswere unaffected in the presence of N-acetylcysteine.Arachidonyl-CoA, a membrane impermeable analog of AA, activateschannels when applied to the cytosolic surface of excised patches,suggesting an effect of FFAs from the cytosolic surface of BK channels.Our data imply a direct interaction between cis FFA and theBK channel protein.

  相似文献   

3.
The question of whether membrane expansion, which is caused by anesthetics in animal systems, alters the lipid composition of plant cell membranes was investigated. We have measured the effects of several anesthetics on the relative amounts of the principal fatty acids from the polar lipids of barley (Hordeum vulgare L.) root membranes. Procaine, dibucaine, tetracaine, chloroform and, to a lesser degree, methanol increased the proportions of palmitic, stearic and oleic acids and decreased the proportions of linoleic and linolenic acids. Ethanol had no significant effect. Total amounts of the fatty acids from the polar lipids of roots in procaine solution decreased markedly so that all of the acids decreased in amount. The anesthetic was effective as soon as the roots were introduced to the solution and the changes progressed at constant rates for 6 h. Only the polar membrane lipids were altered; other lipids were not affected. Increased hydrostatic pressure of about 1.0 MPa largely prevented the anesthetic effects, including the decrease in the total amounts of the fatty acids. Hydrostatic pressure as high as 2 MPa had no effect per se on the membrane lipid composition. These results indicate that anesthetics cause expansion of the root membranes which results in the lipid changes. That a compositional change in the membrane lipids involves a conformational change such as expansion is an indication of the nature of the link between changes in the membrane lipids and changes in function of areas where hydrophilic ions permeate.Abbreviations 16:0 palmitic acid - 18:0 stearic acid - 18:1 oleic acid - 18:2 linoleic acid - 18:3 linolenic acid  相似文献   

4.
Flower organs of Nicotiana tabacum had lower ratios of linolenicacid than the leaf at all stages of development. The petal,ovary and anther (before anthesis) had linoleic acid as themajor fatty acid, and the pistil had high amounts of oleic acid.As for polar lipids, flower organs generally had lower proportionsof chloroplast lipids than the leaf, which resulted in a highproportion of phospholipids such as phosphatidylcholine, phosphatidylinositoland phosphatidylethanolamine. The fatty acid compositions ofthese phospholipids did not change significantly between theearly bud stage and the fully opened flower stage, whereas thoseof monogalactosyldiglyceride and digalactosyldiglyceride changedsignificantly. The oleic acid-rich substances in the pistilwere not detected in the polar lipid regions. Hexadecenoic andhexadecatrienoic acids, which are characteristic of the phosphatidylglyceroland monogalactosyldiglyceride, respectively, in the leaf, weredetected in small amounts in the petal, but not in other flowerorgans. (Received September 16, 1982; Accepted December 20, 1982)  相似文献   

5.
In order to compete with petroleum-based fuel and chemicals, engineering a robust biocatalyst that can convert renewable feedstocks into biorenewable chemicals, such as carboxylic acids, is increasingly important. However, product toxicity is often problematic. In this study, the toxicity of the carboxylic acids hexanoic, octanoic, and decanoic acid on Saccharomyces cerevisiae was investigated, with a focus on octanoic acid. These compounds are completely inhibitory at concentrations of magnitude 1 mM, and the toxicity increases as chain length increases and as media pH decreases. Transciptome analysis, reconstruction of gene regulatory network, and network component analysis suggested decreased membrane integrity during challenge with octanoic acid. This was confirmed by quantification of dose-dependent and chain length-dependent induction of membrane leakage, though membrane fluidity was not affected. This induction of membrane leakage could be significantly decreased by a period of pre-adaptation, and this pre-adaptation was accompanied by increased oleic acid content in the membrane, significantly increased production of saturated lipids relative to unsaturated lipids, and a significant increase in the average lipid chain length in the membrane. However, during adaptation cell surface hydrophobicity was not altered. The supplementation of oleic acid to the medium not only elevated the tolerance of yeast cells to octanoic acid but also attenuated the membrane leakiness. However, while attempts to mimic the oleic acid supplementation effects through expression of the Trichoplusia ni acyl-CoA Δ9 desaturase OLE1(TniNPVE desaturase) were able to increase the oleic acid content, the magnitude of the increase was not sufficient to reproduce the supplementation effect and increase octanoic acid tolerance. Similarly, introduction of cyclopropanated fatty acids through expression of the Escherichia coli cfa gene was not helpful for tolerance. Thus, we have provided quantitative evidence that carboxylic acids damage the yeast membrane and that manipulation of the lipid content of the membrane can increase tolerance, and possibly production, of these valuable products.  相似文献   

6.
To clarify divergent views concerning the mechanism of fatty acid translocation across biomembranes this issue was now investigated in human erythrocytes. Translocation rates of exogenously inserted radioactive oleic acid across the membrane of native cells were derived from the time-dependent increase of the fraction of radioactivity becoming non-extractable by albumin. No accumulation of non-extractable unesterified oleic acid occurred. The rate of transfer was markedly suppressed by SH-reagents and by ATP-depletion. The suppression, however, resulted from a mere decrease of incorporation of oleic acid into phospholipids and was not accompanied by an increase of non-extractable unesterified oleic acid. These findings were reconcilable with the concept of a slow, possibly carrier-mediated fatty acid transfer as well as a very fast presumably, diffusional process not resolvable by the albumin extraction procedure. This ambiguity was resolved by using resealed ghosts, which are unable to incorporate oleic acid into phospholipids. In such ghosts all of the oleic acid inserted into the membrane remains extractable by albumin even after prolonged incubation. On the other hand, ghosts containing albumin accumulated non-extractable oleic acid. The rate of accumulation was beyond the time resolution of the albumin extraction procedure at 4 degrees C. Oleic acid uptake into albumin-containing ghosts became kinetically resolvable when the fatty acid was added as a complex with albumin. Correspondingly, time-resolvable release of oleic acid, originally complexed to internal albumin, into an albumin-containing medium was demonstrated at 4 degrees C. Rate and extent of these redistributions of oleic acid were dependent on the concentrations of internal and external albumin. This indicates limitation by the dissociation of oleic acid from albumin and not its translocation across the membrane. Translocation of oleic acid, which is probably a simple diffusive flip-flop process, must therefore occur with a half-time of less than 15 s. These findings raise doubts on the physiological role of presently discussed concepts of a carrier-mediated translocation of fatty acids across plasma membranes.  相似文献   

7.
Activation of 20S Proteasomes from Spinach Leaves by Fatty Acids   总被引:1,自引:0,他引:1  
In order to clarify the mechanism of activation of plant 20Sproteasomes by fatty acids, we examined the effects of oleic,linoleic and linolenic acids on the three peptidase activitiesof purified 20S proteasomes from spinach leaves and comparedthem with the effects of SDS, a previously characterized activatorof 20S proteasomes. The three fatty acids all activated thehydrolysis of succinyl-Leu-Leu-Val-Tyr-4-methylcoumaryl-7-amide(Suc-LLVYMCA) and benzyloxycarbonyl-Leu-Leu-Glu-2-naphthylamide(Cbz-LLE-2NA) at low concentrations (one-third to one-sixthof that required for activation by SDS). The range of concentrationsof linolenic acid for the activation of Suc-LLVY-MCA hydrolysiswas very narrow. All the fatty acids inhibited the hydrolysisof tert-butoxycarbonyl-Leu-Arg-Arg-4-methylcoumaryl-7-amide(Boc-LRR-MCA)at extremely low concentrations (one-fifth to one-fifteenthof that required for the activation of the hydrolysis of Suc-LLVY-MCAand Cbz-LLE-2NA). In the case of hydrolysis of Suc-LLVY-MCA,SDS and the three fatty acids increased the Vmax value and decreasedthe apparent Km value to similar relative extents. In the caseof hydrolysis of Boc-LLE-MCA, SDS and the three fatty acidsalso decreased the Km and increased the Vmax. However, SDS markedlyincreased Vmax. The curves representing the SDS-dependent activationwere shifted to a lower range by the addition of linoleic acid,but the maximum activity at the optimum concentration of SDSwas essentially unchanged. These results suggest that the activationby SDS and that by the fatty acids has an additive effect. Theresults imply that fatty acids, such as linolenic acid, mightact as physiological regulators in plant cells. (Received April 10, 1995; Accepted December 22, 1995)  相似文献   

8.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

9.
Nonesterified long-chain fatty acids may enter cells by free diffusion or by membrane protein transporters. A requirement for proteins to transport fatty acids across the plasma membrane would imply low partitioning of fatty acids into the membrane lipids, and/or a slower rate of diffusion (flip-flop) through the lipid domains compared to the rates of intracellular metabolism of fatty acids. We used both vesicles of the plasma membrane of adipocytes and intact adipocytes to study transmembrane fluxes of externally added oleic acid at concentrations below its solubility limit at pH 7.4. Binding of oleic acid to the plasma membrane was determined by measuring the fluorescent fatty acid-binding protein ADIFAB added to the external medium. Changes in internal pH caused by flip-flop and metabolism were measured by trapping a fluorescent pH indicator in the cells. The metabolic end products of oleic acid were evaluated over the time interval required for the return of intracellular pH to its initial value. The primary findings were that (i) oleic acid rapidly binds with high avidity in the lipid domains of the plasma membrane with an apparent partition coefficient similar to that of protein-free phospholipid bilayers; (ii) oleic acid rapidly crosses the plasma membrane by the flip-flop mechanism (both events occur within 5 s); and (iii) the kinetics of esterification of oleic acid closely follow the time dependence of the recovery of intracellular pH. Any postulated transport mechanism for facilitating translocation of fatty acid across the plasma membrane of adipocytes, including a protein transporter, would have to compete with the highly effective flip-flop mechanism.  相似文献   

10.
The effect of various fatty acids on lipid peroxidation of liver microsomes induced by different methods in vitro was studied using oxygen uptake and malonaldehyde (MDA) production. It was observed that fatty acids with a single double bond are effective inhibitors of peroxidation. Stereo and positional isomers of oleic acid were equally effective as oleic acid. There was an absolute requirement for a free carboxyl group, since methyl esters of fatty acids and long-chain saturated and unsaturated hydrocarbons could not inhibit peroxidation. Saturated fatty acids with a chain length of 12-16 carbon atoms showed inhibition, whereas more than 18 carbon atoms reduced the inhibitory capacity. Fatty acids of lower chain length such as capric and caprylic acids did not show inhibition. Fatty acid inhibition was partially reversed by increasing the concentration of iron in the system. Peroxidation induced by methods which were independent of iron was not inhibited by fatty acids. It was observed that intestinal microsomes which were resistant to peroxidation due to the presence of nonesterified fatty acids in their membrane lipids were able to peroxidise by methods which do not require iron. These results suggest that certain fatty acids inhibit peroxidation by chelating available free iron. In addition, they may also be involved in competing with the esterified fatty acids in the membrane lipids which are the substrates for peroxidation.  相似文献   

11.
Previous studies have shown that aldosterone treatment of amphibian epithelial cells results not only in stimulation of Na(+) absorption but also in changes in phospholipid composition which are necessary for the mineralocorticoid action of aldosterone. The present study was designed to investigate the effect of aldosterone on phospholipids of mammalian epithelia. Phospholipid and fatty acid composition was examined in colonic epithelium (mineralocorticoid target tissue) and thymus (non-mineralocorticoid but glucocorticoid target tissue) of rats which had received aldosterone or vehicle by a miniosmotic pump for 7 days. Aldosterone increased the mass of colonic phospholipids relative to cellular proteins with concomitant changes in the percentage distribution of fatty acids, whereas the relative distribution of membrane phospholipds was not changed. Phosphatidylcholine increased the content of polyunsaturated and decreased that of monounsaturated fatty acids, which predominantly reflected the accretion of arachidonic and a decrease in oleic and palmitoleic acids. Within the phosphatidylethanolamine subclass, pretreatment of rats with aldosterone decreased the content of monounsaturated fatty acids (predominantly oleic and palmitoleic acid) and of n-3 fatty acids, and increased the content of saturated fatty acids (palmitic acid). The saturated-to-nonsaturated fatty acid ratio also significantly increased after aldosterone treatment. No changes in thymic phospholipids were seen. The results are consistent with the contention that aldosterone specifically modulates phospholipid concentration and metabolism in mineralocorticoid target tissue. The changes in phospholipid content and its fatty acid composition during the fully developed effect of aldosterone may reflect a physiologically important phenomenon with long-term consequences for membrane structure and function.  相似文献   

12.
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.  相似文献   

13.
We have studied the changes in the fatty acid profiles of red blood cell membrane phospholipids in 47 infants who were exclusively fed human milk from birth to 1 month of life. Twenty blood samples were obtained from cord, 15 at 7 days and 12 at 30 days after birth. Membrane phospholipids were obtained from erythrocyte ghosts by thin-layer chromatography and fatty acid composition was determined by gas liquid chromatography. Phosphatidylcholine showed the most important changes during early life; stearic, w6 eicosatrienoic and arachidonic acids decreased whereas oleic and linoleic acids increased. In phosphatidylethanolamine, palmitic and stearic acid declined and oleic, linoleic and docosahexenoic acids increased with advancing age. Small changes were noted for individual fatty acids in phosphatidylserine. In sphingomyelin stearic acid increased from birth to 1 month and linoleic, arachidonic and nervonic acids decreased. Total polyunsaturated fatty acids of the w6 series greater than 18 carbon atoms increased with advancing age in phosphatidylethanolamine and decreased in choline and serine phosphoglycerides and in sphingomyelin. Long chain fatty acids derived from linoleic acid decreased in phosphatidylcholine but increased in ethanolamine and serine phosphoglycerides. The different behavior in the changes observed in fatty acid patterns for each erythrocyte membrane phospholipid may be a consequence of its different location in the cell membrane bilayer and specific exchange with plasma lipid fractions.  相似文献   

14.
Erythrocyte membrane fatty acids (FA), such as oleic acid, are related to acute coronary syndrome. There is no report about the effect of omega-3 FA on oleic acid in peritoneal dialysis (PD) patients. We hypothesized that omega-3 FA can modify erythrocyte membrane FA, including oleic acid, in PD patients. In a double-blind, randomized, placebo-controlled study, 18 patients who were treated with PD for at least 6 months were randomized to treatment for 12 weeks with omega-3 FA or placebo. Erythrocyte membrane FA content was measured by gas chromatography at baseline and after 12 weeks. The erythrocyte membrane content of eicosapentaenoic acid and docosahexaenoic acid was significantly increased and saturated FA and oleic acid were significantly decreased in the omega-3 FA supplementation group after 12 weeks compared to baseline. In conclusion, erythrocyte membrane FA content, including oleic acid, was significantly modified by omega-3 FA supplementation for 12 weeks in PD patients.  相似文献   

15.
A series of C18 and C22 fatty acids, with varying degrees of unsaturation, were tested for their ability to alter the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine. Lowering the pH from 7.4 to 6.4 greatly decreased the bilayer to hexagonal phase transition temperature of fatty acid-phosphatidylethanolamine mixtures. At pH 7.4, increasing unsaturation of the fatty acid generally increased their hexagonal phase-forming ability. However, oleic acid had somewhat greater hexagonal phase-forming capacity and docosahexaenoic acid somewhat less than would be expected for their degree of unsaturation. At pH 6.4 the difference among fatty acids was small and except for stearic acid, all had similar hexagonal phase forming tendencies. The fatty acids cause acid-induced fusion. There is little effect of fatty acid structure on membrane fusion.  相似文献   

16.
The substrate specificities and selectivities of acyl-CoA synthetasesfrom maturing oilseeds were investigated to reveal fatty acidstructures that the enzymes recognize. The synthetases fromrapeseed (Brassica nap us) and castor bean (Ricinus communis)activated palmitic acid 16:0 most rapidly among the saturatedfatty acids tested. Native unsat-urated fatty acids, oleic 18:1cis-9, linoleic 18:2 cis-9,12 and linolenic acid 18:3 m-9,12,15,were all effectively utilized. Palmitoleic acid 16:1 cis-9 wasalso a good substrate, while myristoleic acid 14:1 cis-9 wasa poor substrate. The activation of erucic acid 22:1 cis-13was very slow. Elaidic acid 18:1 trans-9 was utilized at ratessimilar to those of the cis isomer. The efficiencies of petroselinicacid 18:1 cis-6 were half the efficiencies of oleic acid, whilethe rates of activation of m-vaccenic acid 18:1 cw-11 were comparableto those for oleic acid. These findings suggest that acyl-CoAsynthetases of oilseeds producing long-chain fatty acids strictlyrecognize the molecular structures of fatty acids, i.e., thecarbon-chain length between C16-C18 and the position of thefirst double bond (  相似文献   

17.
The composition, synthesis, and esterification of fatty acids were studied in aortas of White Carneau and Show Racer pigeons after perfusion of the aortas with a medium containing acetate-1-(14)C. For both breeds of pigeons the principal change in aortic fatty acids, in response to an atherogenic diet, was a marked increase in the percentage of oleic acid in the cholesteryl ester fraction. In atherosclerotic aortas incorporation of acetate-1-(14)C into the phospholipid and glyceride fractions increased 2-fold, while a much greater increase (up to 10-fold) was seen in incorporation into cholesteryl esters. In those birds receiving the atherogenic diet, palmitic acid accounted for approximately 50% of the fatty acid radioactivity, compared with approximately 25% from control aortas. Calculation of fatty acid synthesis showed the major newly synthesized fatty acids to be stearic acid in the phospholipid fraction; stearic, palmitic, and oleic acids in the glycerides; and oleic acid in the cholesteryl esters. The pattern of fatty acid synthesis was closely similar to the actual fatty acid composition of the aorta. In atherosclerotic aortas an increased synthesis of all fatty acids was seen, but the greatest increase was seen in the synthesis of oleic acid and its esterification to cholesterol.  相似文献   

18.
The low level of endogenous fatty acid synthesis in Acholeplasma laidlawii A strain EF22 was found to be caused by a deficiency of pantetheine in the lipid-depleted growth medium. By supplementing the oleic acid-containing medium with increasing concentrations of pantetheine, saturated fatty acid synthesis was stimulated (having an apparent Km of 5 μM for pantetheine) and the incorporation of endogenously synthesized fatty acids in membrane lipids increased markedly. Furthermore, carotenoid biosynthesis was stimulated. Exogenous palmitic acid was found to inhibit partially the endogenous fatty acid synthesis. A gradual stimulation of fatty acid synthesis was accompanied by a linear increase in the molar proportion between the two dominating membrane glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol. The total amount of charged membrane lipids decreased upon increasing the degree of fatty acid saturation. These regulations are discussed in terms of membrane stability, and influence of membrane molecular ordering and surface charge density on lipid polar head group synthesis.  相似文献   

19.
Tween 80, which caused increased biomass formation, also produced the highest increase in the uptake rate of all components of the medium. The fatty acid components of the respective Tweens,i.e. palmitic acid (Tween 40), stearic acid (Tween 60), and oleic acid (Tween 80), have no effect either on alkaloid production or on substrate uptake. The fatty acid composition was different in the cell membrane of the culture supplemented with Tween 60 and facilitated the transport of metabolites into the cells.  相似文献   

20.
In this study we examined the effect of polychlorinated biphenyls (PCBs) on biomass production of a PCB-degrading Pseudomonas stutzeri, and on the fatty acid profile of its major membrane lipids. Growth based on biomass weight was stimulated when PCBs were added at the time of inoculation, but PCB addition three days after inoculation led to a significant decrease in biomass. Simultaneous addition of PCBs plus biphenyl or PCBs plus carvone negatively affected P. stutzeri biomass (addition of biphenyl or carvone at the time of inoculation and PCBs to three-day-old culture). In the presence of PCBs alone the amount of the prevalent fatty acids C16:0 and C17-cyclopropyl fatty acid (C17-CP) of P. stutzeri in total and neutral lipids was significantly reduced. When PCBs were added together with carvone (carvone at the time of inoculation and PCBs after three days) a significant reduction of these fatty acids was obtained, but, in addition, oleic, cis-vaccenic, and cyclononadecanic (C19-CP) acids were increased. When PCBs were combined to biphenyl the prevalent fatty acids were reduced and oleic, cis-vaccenic, and cyclononadecanic acids were increased in total and neutral lipids. Addition of 3-chlorobenzoic acid led to a significant growth inhibition and to the production of oleic and cis-vaccenic acids in the membrane fraction phosphatidylcholine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号