首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100?W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24?h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24?h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48?h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24?h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.  相似文献   

4.
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100?W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24?h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24?h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48?h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24?h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.  相似文献   

5.
6.
X Wang  H V Modak    F R Tabita 《Journal of bacteriology》1993,175(21):7109-7114
Rhodospirillum rubrum and Rhodobacter sphaeroides were shown to be capable of photolithoautotrophic growth in the absence of the reductive pentose phosphate (Calvin) cycle. Ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strains were incapable of photolithoautotrophic growth using hydrogen as an electron donor but were able to grow in the absence of organic carbon using less reduced inorganic electron donors, i.e., thiosulfate or sulfide. Wild-type R. rubrum grown in the presence of thiosulfate contained RubisCO levels that were 50-fold lower compared with those in cells growth with hydrogen as an electron donor without substantially influencing rates of photolithoautotrophic growth. These results suggest there are two independent CO2 fixation pathways that support photolithoautotrophic growth in purple nonsulfur photosynthetic bacteria, indicating that these organisms have developed sophisticated control mechanisms to regulate the flow of carbon from CO2 through these separate pathways.  相似文献   

7.
In Rhodobacter sphaeroides, many of the structural genes encoding enzymes of the Calvin cycle are duplicated and grouped within two separate clusters. In this study, the nucleotide sequence of a 5627-base pair region of DNA that contains the form I Calvin cycle gene cluster has been determined. The five open reading frames are arranged in the order, fbpA prkA cfxA rbcL rbcS and are tightly linked and oriented in the same direction. The results of insertional mutagenesis studies suggest the genes are organized within an operon. Consistent with this proposal, the cfxA gene has been tentatively identified as a gene encoding the Calvin cycle enzyme, aldolase. Measurement of the activities of various Calvin cycle enzymes in the insertion mutants showed that inactivation of genes within one CO2 fixation cluster affected expression of genes within the second cluster, revealing a complex regulatory network.  相似文献   

8.
We have identified, cloned and sequenced the three ribosomal RNA (rRNA) operons (rrn) present in the facultative photoheterotroph Rhodobacter sphaeroides. DNA sequence analysis has identified the 16S, 23S, and 5S rRNAs, two tRNAs (ile and ala) in the spacer region between the 16S and 23S rRNAs, and an f-met tRNA immediately following the 5S rRNA gene of all three operons. Physical mapping, genetic analysis, and Southern hybridization data indicate that rrnA is contained on a large chromosome and rrnB and rrnC are contained on a second smaller chromosome. These findings are discussed in relation to the origins of diploidy.  相似文献   

9.
Rhodobacter sphaeroides has a complex chemosensory system, with several loci encoding multiple homologues of the components required for chemosensing in Escherichia coli. The operons cheOp2 and cheOp3 each encode complete pathways, and both are essential for chemosensing. The components of cheOp2 are predominantly localized to the cell pole, whereas those encoded by cheOp3 are predominantly targeted to a discrete cluster in the cytoplasm. Here we show that the expression of the two pathways is regulated independently. Overlapping promoters recognized by sigma(28) and sigma(70) RNAP holoenzyme transcribe cheOp2, whereas cheOp3 is regulated by one of the four sigma(54) homologues, RpoN3. The different regulation of these operons may reflect the need for balancing responses to extra- and intracellular signals under different growth conditions.  相似文献   

10.
In Rhodobacter sphaeroides, MreB, MreC, MreD, PBP2, and RodA are encoded at the same locus. The localizations of PBP2, MreB, and MreC, which have all been implicated in the synthesis of the peptidoglycan layer, were investigated under different growth conditions to gain insight into the relationships between these proteins. Immunofluorescence microscopy showed that PBP2 localized to specific sites at the midcell of elongating cells under both aerobic and photoheterotrophic conditions. Visualizing PBP2 at different stages of the cell cycle showed that in elongating cells, PBP2 was found predominately at the midcell, with asymmetric foci and bands across the cell. PBP2 remained at midcell until the start of septation, after which it moved to midcell of the daughter cells. Deconvolution and three-dimensional reconstructions suggested that PBP2 forms a partial ring at the midcell of newly divided cells and elongated cells, while in septating cells, partial PBP2 rings were present at one-quarter and three-quarter positions. Due to the diffraction limits of light microscopy, these partial rings could represent unresolved helices. Colocalization studies showed that MreC always colocalized with PBP2, while MreB colocalized with PBP2 only during elongation; during septation, MreB remained at the septation site, whereas PBP2 relocalized to the one-quarter and three-quarter positions. These results suggest that PBP2 and MreC are involved in peptidoglycan synthesis during elongation and that this occurs at specific sites close to midcell in R. sphaeroides.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Mutants deficient in the proper regulation and derepression of ribulose-1.5-bisphosphate carboxylase oxygenase (RuBPC/O) in Rhodobacter sphaeroides were isolated by ethyl methanesulphonate (EMS) and Tn5 mutagenesis of a recA parental strain. Mutants were identified by their ability to grow under conditions where the organism requires basal levels of RuBPC C/O for growth yet fail to grow under conditions which require derepression of the enzyme (Aut-). The newly isolated Aut- mutants exhibited phenotypes distinguishable from the previously isolated Aut- mutant, strain KW25/11. Rocket immunoelectrophoretic examination of RuBPC/O levels revealed marked variance in the ability of mutants to derepress form I and form II RuBPC/O in the absence of exogenous carbon. Evidence that some of the mutants possessed different mutations was substantiated by complementation of the EMS-generated mutants by entirely different genes isolated from a genomic library of R. sphaeroides constructed in the broad-host-range cosmid vector pVK102. Southern hybridization analysis of the complementing library isolates showed the complementing genes to be normally carried on the endogenous plasmids of R. sphaeroides. The gene complementing mutant strain KW25/11 was mapped by Tn5 insertional inactivation and the complementing region found to reside on a 1.5 kb PstJ. BamHI fragment. Complemented strains were unable to match wild-type levels of RuBPC/O under conditions requiring derepression of the enzyme, except for mutant strain EMS45. The Aut- phenotype, represented by the mutants isolated in this study, stems from a deficiency in some aspect of photoautotrophic growth.  相似文献   

18.
The regulation of the Rhodobacter sphaeroides lexA gene has been analyzed using both gel-mobility experiments and lacZ gene fusions. PCR-mediated mutagenesis demonstrated that the second GAAC motif in the sequence GAACN7GAACN7GAAC located upstream of the R. sphaeroides lexA gene is absolutely necessary for its DNA damage-mediated induction. Moreover, mutagenesis of either the first or the third GAAC motif in this sequence reduced, but did not abolish, the inducibility of the R. sphaeroides lexA gene. A R. sphaeroides lexA-defective (Def) mutant has also been constructed by replacing the active lexA gene with an inactivated gene copy constructed in vitro. Crude extracts of the R. sphaeroides lexA(Def) strain are unable to form any protein-DNA complex when added to the wild-type lexA promoter of R. sphaeroides. Likewise, the R. sphaeroides lexA(Def) cells constitutively express the recA and lexA genes. All these data clearly indicate that the lexA gene product is the negative regulator of the R. sphaeroides SOS response. Furthermore, the morphology, growth and viability of R. sphaeroides lexA(Def) cultures do not show any significant change relative to those of the wild-type strain. Hence, R. sphaeroides is so far the only bacterial species whose viability is known not to be affected by the presence of a lexA(Def) mutation. Received: 31 January 2000 / Accepted: 3 April 2000  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号