首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CYC2 is an essential PHO80-like cyclin that forms a complex with the cdc2-related kinase CRK3 in Trypanosoma brucei. In both procyclic and bloodstream form T. brucei, knock-down of CYC2 by RNA interference (RNAi) led to an accumulation of cells in G(1) phase. Additionally, in procyclic cells, but not in bloodstream form cells, CYC2 RNAi induced a specific cell elongation at the posterior end. The G(1) block, as well as the posterior end elongation in the procyclic form, was irreversible once established. Staining for tyrosinated alpha-tubulin and morphometric analyses showed that the posterior end elongation occurred through active microtubule extension, with no repositioning of the kinetoplast. Hence, these cells can be classified as exhibiting the "nozzle" phenotype as has been described for cells that ectopically express TbZFP2, a zinc finger protein that is involved in the differentiation of the bloodstream form to procyclic form. Within the tsetse fly, procyclic trypanosomes differentiate to elongated mesocyclic cells. However, although mesocyclic trypanosomes isolated from tsetse flies also show active microtubule extension at the posterior end, the kinetoplast is coincidentally repositioned such that it always lies approximately midway between the nucleus and posterior end of the cell. Thus, in the procyclic form CYC2 has dual functionality and is required for both cell cycle progression through G(1) and for the maintenance of correct cell morphology, whereas in the bloodstream form only a role for CYC2 in G(1) progression is evident.  相似文献   

3.
The African trypanosome, Trypanosoma brucei, expresses two abundant stage-specific glycosylphosphatidylinositol (GPI)-anchored glycoproteins, the procyclic acidic repetitive protein (PARP or procyclin) in the procyclic form, and the variant surface glycoprotein (VSG) in the mammalian bloodstream form. The GPI anchor of VSG can be readily cleaved by phosphatidylinositol (PI)-specific phospholipase C (PI-PLC), whereas that of PARP cannot, due to the presence of a fatty acid esterified to the inositol. In the bloodstream form trypanosome, a number of GPIs which are structurally related to the VSG GPI anchor have been identified. In addition, several structurally homologous GPIs have been described, both in vivo and in vitro, that contain acyl-inositol. In vivo the procyclic stage trypanosome synthesizes a GPI that is structurally homologous to the PARP GPI anchor, i.e. contains acyl-inositol. No PI-PLC-sensitive GPIs have been detected in the procyclic form. Using a membrane preparation from procyclic trypanosomes which is capable of synthesizing GPI lipids upon the addition of nucleotide sugars we find that intermediate glycolipids are predominantly of the acyl-inositol type, and the mature ethanolamine-phosphate-containing precursors are exclusively acylated. We suggest that the differences between the bloodstream and procyclic form GPI biosynthetic intermediates can be accounted for by the developmental regulation of an inositol acylhydrolase, which is active only in the bloodstream form, and a glyceride fatty acid remodeling system, which is only partially functional in the procyclic form.  相似文献   

4.
5.
The surface of the bloodstream form of the African trypanosome, Trypansoma brucei, is covered with about 10(7) molecules of the variant surface glycoprotein (VSG), a protein tethered to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) membrane anchor. This anchor is cleavable by an endogenous GPI-specific phospholipase C (GPI-PLC). GPI-PLC activity is down regulated when trypanosomes differentiate from the bloodstream form to the procyclic form found in the tsetse fly vector. We have mapped the GPI-PLC locus in the trypanosome genome and have examined the mechanism for this developmental regulation in T. brucei. Southern blot analysis indicates a single-copy gene for GPI-PLC, with two allelic variants distinguishable by two NcoI restriction fragment length polymorphisms. The gene was localized solely to a chromosome in the two-megabase compression region by contour-clamped homogeneous electric field gel electrophoresis. No rearrangement of the GPI-PLC gene occurs during differentiation to procyclic forms, which could potentially silence GPI-PLC gene expression. Enzymological studies give no indication of a diffusible inhibitor of GPI-PLC activity in procyclic forms, and Western immunoblot analysis reveals no detectable GPI-PLC polypeptide in these forms. Therefore, it is highly unlikely that the absence of GPI-PLC activity in procyclic forms is due to posttranslational control. Northern (RNA) blot analysis reveals barely detectable levels of GPI-PLC mRNA in procyclic forms; therefore, regulation of GPI-PLC activity in these forms correlates with the steady-state mRNA level.  相似文献   

6.
Differentiation in African trypanosomes (Trypanosoma brucei) entails passage between a mammalian host, where parasites exist as a proliferative slender form or a G0-arrested stumpy form, and the tsetse fly. Stumpy forms arise at the peak of each parasitaemia and are committed to differentiation to procyclic forms that inhabit the tsetse midgut. We have identified a protein tyrosine phosphatase (TbPTP1) that inhibits trypanosome differentiation. Consistent with a tyrosine phosphatase, recombinant TbPTP1 exhibits the anticipated substrate and inhibitor profile, and its activity is impaired by reversible oxidation. TbPTP1 inactivation in monomorphic bloodstream trypanosomes by RNA interference or pharmacological inhibition triggers spontaneous differentiation to procyclic forms in a subset of committed cells. Consistent with this observation, homogeneous populations of stumpy forms synchronously differentiate to procyclic forms when tyrosine phosphatase activity is inhibited. Our data invoke a new model for trypanosome development in which differentiation to procyclic forms is prevented in the bloodstream by tyrosine dephosphorylation. It may be possible to use PTP1B inhibitors to block trypanosomatid transmission.  相似文献   

7.
The small zinc finger proteins tbZFP1 and tbZFP2 have been implicated in the control of Trypanosoma brucei differentiation to the procyclic form. Here, we report that the complete ZFP family in Trypanosoma cruzi is composed by four members, ZFP1A and B, and ZFP2A and B. ZFP1B is a paralog specific gene restricted to T. cruzi, while the ZFP2A and B paralogs diverged prior to the trypanosomatid lineage separation. Moreover, we demonstrate that TcZFP1 and TcZFP2 members interact with each other and that this interaction is mediated by a WW domain in TcZFP2. Also, TcZFP2B strongly homodimerizes by a glycine rich region absent in TcZFP2A. We propose a model to discuss the relevance of these protein-protein interactions in terms of the functions of these proteins.  相似文献   

8.
9.
The protozoan parasite Trypanosoma brucei lives in the bloodstream of vertebrates or in a tsetse fly. Expression of a GPI-phospholipase C polypeptide (GPI-PLCp) in the parasite is restricted to the bloodstream form. Events controlling the amount of GPI-PLCp expressed during differentiation are not completely understood. Our metabolic “pulse-chase” analysis reveals that GPI-PLCp is stable in bloodstream form. However, during differentiation of bloodstream to insect stage (procyclic) T. brucei, translation GPI-PLC mRNA ceases within 8 h of initiating transformation. GPI-PLCp is not lost precipitously from newly transformed procyclic trypanosomes. Nascent procyclics contain 400-fold more GPI-PLCp than established insect stage T. brucei. Reduction of GPI-PLCp in early-stage procyclics is linked to parasite replication. Sixteen cell divisions are required to reduce the amount of GPI-PLCp in newly differentiated procyclics to levels present in the established procyclic. GPI-PLCp is retained in strains of T. brucei that fail to replicate after differentiation of the bloodstream to the procyclic form. Thus, at least two factors control levels of GPI-PLCp during differentiation of bloodstream T. brucei; (i) repression of GPI-PLC mRNA translation, and (ii) sustained replication of newly transformed procyclic T. brucei. These studies illustrate the importance of repeated cell divisions in controlling the steady-state amount of GPI-PLCp during differentiation of the African trypanosome.  相似文献   

10.
Li Z  Wang CC 《Eukaryotic cell》2006,5(7):1026-1035
Aurora-B kinase is a chromosomal passenger protein essential for chromosome segregation and cytokinesis. In the procyclic form of Trypanosoma brucei, depletion of an aurora-B kinase homologue TbAUK1 inhibited spindle formation, mitosis, cytokinesis, and organelle replication without altering cell morphology. In the present study, an RNA interference knockdown of TbAUK1 or overexpression of inactive mutant TbAUK1-K58R in the bloodstream form also resulted in defects in spindle formation, chromosome segregation, and cytokinesis but allowed multiple rounds of nuclear DNA synthesis, nucleolus multiplication, and continuous replication of kinetoplast, basal body, and flagellum. The typical trypanosome morphology was lost to an enlarged round shape filled with microtubules. It is thus apparent that there are distinctive mechanisms of action of TbAUK1 in regulating cell division between the two developmental stages of trypanosome. While it exerts a tight control on mitosis, organelle replication, and cytokinesis in the procyclic form, it regulates cytokinesis without rigid control over either nuclear DNA synthesis or organelle replication in the bloodstream form. The molecular basis underlining these discrepancies remains to be explored.  相似文献   

11.
The African trypanosome, Trypanosoma brucei, maintains an integral link between cell cycle regulation and differentiation during its intricate life cycle. Whilst extensive changes in phosphorylation have been documented between the mammalian bloodstream form and the insect procyclic form, relatively little is known about the parasite''s protein kinases (PKs) involved in the control of cellular proliferation and differentiation. To address this, a T. brucei kinome-wide RNAi cell line library was generated, allowing independent inducible knockdown of each of the parasite''s 190 predicted protein kinases. Screening of this library using a cell viability assay identified ≥42 PKs that are required for normal bloodstream form proliferation in culture. A secondary screen identified 24 PKs whose RNAi-mediated depletion resulted in a variety of cell cycle defects including in G1/S, kinetoplast replication/segregation, mitosis and cytokinesis, 15 of which are novel cell cycle regulators. A further screen identified for the first time two PKs, named repressor of differentiation kinase (RDK1 and RDK2), depletion of which promoted bloodstream to procyclic form differentiation. RDK1 is a membrane-associated STE11-like PK, whilst RDK2 is a NEK PK that is essential for parasite proliferation. RDK1 acts in conjunction with the PTP1/PIP39 phosphatase cascade to block uncontrolled bloodstream to procyclic form differentiation, whilst RDK2 is a PK whose depletion efficiently induces differentiation in the absence of known triggers. Thus, the RNAi kinome library provides a valuable asset for functional analysis of cell signalling pathways in African trypanosomes as well as drug target identification and validation.  相似文献   

12.
Li Y  Li Z  Wang CC 《Molecular microbiology》2003,49(1):251-265
Ubiquitination and proteasomal degradation of cell cycle regulatory proteins are known to play a pivotal role in controlling the progression of the eukaryotic cell cycle. Using the technique of RNA interference (RNAi) on the bloodstream form of Trypanosoma brucei, we were able to knock down expression of each of the 11 non-ATPase regulatory subunit proteins (Rpns) in the 19S regulatory complex of the 26S proteasome. In each case, the knock-down led to arrest of cells within the G1 and G2 phases, suggesting blockage of cell cycle progression at both G1/S and G2/M boundaries. This finding differs from that observed previously in the procyclic form of T. brucei, in which loss of individual Rpns blocks only passage across the G2/M boundary. Thus, proteasomal degradation of additional regulatory protein(s) may be required for exiting from G1 phase in the bloodstream form. In vitro differentiation of each of the 11 Rpn-depleted bloodstream form cell lines into the procyclic form was monitored. Each cell line proceeded to completion of the differentiation process like the wild-type cells with the total percentage of differentiated cells about equivalent to the sum of G1 and G2 cells. Thus, cells trapped in either G1 or G2 phase can apparently still enter and complete the process of differentiation, which is probably neither stage specific nor dependent on the progression of the T. brucei cell cycle. The process is probably a simple pattern change of gene expression in the trypanosome induced by a temperature decrease from 37 degrees C to 26 degrees C in the presence of citrate and cis-aconitate.  相似文献   

13.
The protozoan parasite Trypanosoma brucei is coated by glycosylphosphatidylinositol (GPI)-anchored proteins. During GPI biosynthesis, inositol in phosphatidylinositol becomes acylated. Inositol is deacylated prior to attachment to variant surface glycoproteins in the bloodstream form, whereas it remains acylated in procyclins in the procyclic form. We have cloned a T. brucei GPI inositol deacylase (GPIdeAc2). In accordance with the acylation/deacylation profile, the level of GPIdeAc2 mRNA was 6-fold higher in the bloodstream form than in the procyclic form. Knockdown of GPIdeAc2 in the bloodstream form caused accumulation of an inositol-acylated GPI, a decreased VSG expression on the cell surface and slower growth, indicating that inositol-deacylation is essential for the growth of the bloodstream form. Overexpression of GPIdeAc2 in the procyclic form caused an accumulation of GPI biosynthetic intermediates lacking inositol-linked acyl chain and decreased cell surface procyclins because of release into the culture medium, indicating that overexpression of GPIdeAc2 is deleterious to the surface coat of the procyclic form. Therefore, the GPI inositol deacylase activity must be tightly regulated in trypanosome life cycle.  相似文献   

14.
TbRAB4 is the Trypanosoma brucei orthologue of the small GTPase Rab4, which is implicated in the control of early endocytosis and recycling processes. TbRAB4 is expressed constitutively in the procyclic and bloodstream stages suggesting an important function throughout the trypanosome life-cycle. Previous work from our laboratory has shown TbRAB4 to be essential in the bloodstream form. Induction of double-stranded TbRAB4 RNA expression leads to a specific reduction in TbRAB4 protein levels and inhibition of growth in procyclic form T. brucei, with alterations in uptake and recycling as measured with the fluorophore FM4-64. Trypanosomes overexpressing GTP-locked TbRAB4(QL) mutants exhibit significant perturbations of endocytic and recycling pathways as well as disruption of surface expression of GPI-anchored proteins. Most significantly, both the endogenous GPI-anchored procyclins and an ectopically expressed GPI-anchored protein, the variant surface glycoprotein, are relocated from the surface to internal sites in TbRAB4 mutant cells. These data indicate that TbRAB4 is important in maintenance of normal surface expression of lipid-anchored proteins, and implicate recycling pathways as factors for modulation of surface protein expression in the procyclic trypanosome. The conservation of function of Rab4 throughout eukaryotic evolution demonstrated here indicates that the Rab4-mediated trafficking pathway is an extremely ancient component of the endocytic system.  相似文献   

15.
Trypanosoma brucei strain 366D trypomastigotes grown at 37 degrees C in the presence of a human fibroblast cell line formed foci underneath the feeder cells whereas trypanosomes grown in the presence of a human epithelial cell line grew only in the culture supernatant. A culture system was developed to study the differentiation of bloodstream trypomastigotes grown in the epithelial cell system into procyclic trypomastigotes at 27 degrees C. The morphological differentiation into the procyclic form was complete by 48 h. Cell division did not occur until 30-40 h after transfer to 27 degrees C. Various characteristics of this system were examined, including the effect of the feeder layer, the type of medium, the presence of the metabolites cis-aconitate and citrate, the preadaptation period, and the trypanosome cell concentration. The respiration of the recently differentiated procyclic cells was less sensitive to inhibition by CN- than that of established procyclic forms, implying a delayed appearance of complete mitochondrial oxidative pathways. This trypanosome differentiation system has the advantage that the animal host is not needed and the entire process is carried out in in vitro culture.  相似文献   

16.
Trypanosoma brucei strain 366D trypomastigotes grown at 37°C in the presence of a human fibroblast cell line formed foci underneath the feeder cells whereas trypanosomes grown in the presence of a human epithelial cell line grew only in the culture supernatant. A culture system was developed to study the differentiation of bloodstream trypomastigotes grown in the epithelial cell system into procyclic trypomastigotes at 27°C. The morphological differentiation into the procyclic form was complete by 48 h. Cell division did not occur until 30–40 h after transfer to 27°C. Various characteristics of this system were examined, including the effect of the feeder layer, the type of medium, the presence of the metabolites cis-aconitate and citrate, the preadaptation period, and the trypanosome cell concentration. The respiration of the recently differentiated procyclic cells was less sensitive to inhibition by CN-than that of established procyclic forms, implying a delayed appearance of complete mitochondrial oxidative pathways. This trypanosome differentiation system has the advantage that the animal host is not needed and the entire process is carried out in in vitro culture.  相似文献   

17.
The mitochondrial electron transfer chain present in the procyclic form of the African trypanosome Trypanosoma brucei contains both cytochrome c oxidase and an alternative oxidase (TAO) as terminal oxidases that reduce oxygen to water. By contrast, the electron transfer chain of the primitive mitochondrion present in the bloodstream form of T. brucei contains only TAO as the terminal oxidase. TAO functions in the bloodstream forms to oxidize the ubiquinol produced by the glycerol-3-phosphate shuttle that results in the oxidation of the reduced nicotinamide adenine dinucleotide phosphate produced by glycolysis. The function, however, of TAO in the procyclic forms is unknown. In this study, we found that inhibition of TAO by the specific inhibitor salicylhydroxamic acid stimulates the formation of reactive oxygen species (ROS) in trypanosome mitochondria, resulting in mitochondrial alteration and increased oxidation of cellular proteins. Moreover, the activity and protein content of TAO in procyclic trypanosomes were increased when cells were incubated in the presence of hydrogen peroxide or antimycin A, the cytochrome bc1 complex inhibitor, which also results in increased ROS production. We suggest that one function of TAO in procyclic cells may be to prevent ROS production by removing excess reducing equivalents and transferring them to oxygen.  相似文献   

18.
ABSTRACT. The glycerophosphate oxidase (GPO), the unique terminal oxidase of bloodstream trypanosome (TAO), appears to be functionally similar to the alternative oxidases of some plants and higher fungi. Immunoblotting of mitochondrial proteins of bloodstream trypomastigotes of Trypanosoma brucei brucei with monoclonal or polyclonal antibodies to Sauromatum guttatum (voodoo lily) and Symplocarpus foetidus (skunk cabbage) alternative oxidases respectively revealed two proteins of about 33 kDa (p33) and 68 kDa (p68). These proteins are not present in procyclic trypomastigotes. Electrophoresis under rigorous denaturing conditions indicated p68 to be the dimer of p33. Indirect immunofluorescent studies of bloodstream and procyclic trypomastigotes with monoclonal antibody to plant alternative oxidase also showed the localization of 33 kDa protein in the mitochondria of the bloodstream trypomastigotes. The functional TAO activity could be solubilized efficiently from the mitochondrial membrane of the bloodstream trypomastigotes by 1% NP-40 or 10 mM lauryl maltoside. When fractionated by Superose 12 gel filtration chromatography, p33 was co-purified with the TAO enzymatic activity. The apparent molecular size of the active enzyme complex was found to be 160 kDa. Gradual disappearance of the 33 kDa protein and the TAO enzymatic activity were well correlated during in vitro differentiation of the bloodstream to procyclic trypomastigotes. This study implies that the net biosynthesis of p33, an essential subunit of TAO, is decreased during differentiation from bloodstream to procyclic trypomastigotes.  相似文献   

19.
One- and two-dimensional gel electrophoresis of the solubilized mitochondrial proteins of bloodstream and procyclic trypomastigote Trypanosoma brucei rhodesiense and radiolabeling of proteins in the presence of cycloheximide were used to identify proteins synthesized in the trypanosome mitochondrion. The proteins which comprise the mitochondrion were found to be very similar in both bloodstream and procyclic trypomastigotes, but do differ in their level of synthesis. A protein putatively identified as subunit II of cytochrome oxidase (EC 1.9.3.1) was detected in mitochondria from both the procyclic and bloodstream organisms. The presence of this protein in bloodstream trypomastigotes and the overall similarity of protein content in the trypanosome mitochondria is noteworthy in view of the fact that bloodstream trypomastigotes have a repressed mitochondrion with no detectable tricarboxylic acid cycle or cytochrome electron transport chain.  相似文献   

20.
A novel selection scheme has been developed to isolate bloodstream forms of Trypanosoma brucei, which are defective in their ability to differentiate to the procyclic stage. Detailed characterization of one selected cell line (defective in differentiation clone 1 [DiD-1]) has demonstrated that these cells are indistinguishable from the wild-type population in terms of their morphology, cell cycle progression, and biochemical characteristics but are defective in their ability to initiate differentiation to the procyclic form. Although a small proportion of DiD-1 cells remain able to transform, deletion of the genes for glycophosphatidyl inositol-phospholipase C demonstrated that this enzyme was not responsible for this inefficient differentiation. However, the attenuated growth of the Delta-glycophosphatidyl inositol-phospholipase C DiD-1 cells in mice permitted the expression of stumpy characteristics in this previously monomorphic cell line, and concomitantly their ability to differentiate efficiently was restored. Our results indicate that monomorphic cells retain expression of a characteristic of the stumpy form essential for differentiation, and that this is reduced in the defective cells. This approach provides a new route to dissection of the cytological and molecular basis of life cycle progression in the African trypanosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号