首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sedum alfredii Hance is a fast-growing and high-biomass zinc (Zn) hyperaccumulator native to China. A compound containing substituted indole ligand was isolated from this Zn hyperaccumulator plants by sonication/ethanol extraction, macroporous resin column as well as preparative HPLC (P-HPLC). Hydroponic experiment showed that the concentrations of both Zn and the compound containing substituted indole ligand were remarkably increased in stems and leaves of both hyperaccumulator and non-hyperaccumulator as Zn rising from 0.5 to 50 μmol L?1, with much more in the stems of hyperaccumulator than non-hyperaccumulator. At 50 μmol L?1 Zn, hyperaccumulator grew normally but its non-hyperaccumulator suffered from strongly Zn-induced toxicity. This suggested that there was a positive correlation between the compound containing substituted indole ligand and Zn concentration in shoots of hyperaccumulator S. alfredii.  相似文献   

2.
Positive root response to metals may enhance metal accumulation for greater requirement in hyperaccumulators. The effects of spatially heterogeneous Zn/Cd addition on root allocation, metal accumulation, and growth of the Zn/Cd hyperaccumulator Sedum alfredii were assessed in a pot experiment. Young shoots of S. alfredii were grown with or without supplied Zn/Cd. Two concentrations were used of each metal, and each metal concentration had one homogeneous and two heterogeneous treatments. Growth increased by 1.6–3.2 times with the increasing overall dose of Zn/Cd addition, and shoot biomass was positively correlated with shoot Zn/Cd concentration (P?<?0.001). In all heterogeneous treatments, the plants consistently allocated approximately 90% of root biomass to the metal-enriched patches, and shoot Zn/Cd contents were greater than or similar to those in the homogeneous treatment at each metal concentration. Plants in the control treatment showed symptoms of Zn deficiency, although their shoots had Zn concentrations 100-fold higher than the critical deficiency value for most plants. We conclude that S. alfredii has evolved root foraging mechanisms associated with its greater requirements for Zn/Cd. These results could have important implications both for phytoremediation and for investigation of positive role of Cd in higher plants.  相似文献   

3.
4.
Effects of Cd2+ on growth and Cd-binding complex formation in roots were examined with various seedlings of mono- and dicotyledonous plants. Maize, oat, barley and rice exhibited the greater tolerance to Cd2+ (100 μM) than did azuki bean, cucumber, lettuce, pea, radish, sesame and tomato (10–30 μM). Azuki bean was the most sensitive to Cd2+ (<10 μM). Under these Cd-treatments, cereal roots accumulated Cd2+ in the cytoplasmic fractions and transported Cd2+ into the same fractions of shoot tissues, to larger extents than did dicotyledonous roots. Cereal roots synthesized a Cd-binding complex containing phytochelatins in the cytoplasmic fractions, depending upon Cd2+ concentrations applied (30–100 μM). Such a complex was not detected from the same fractions of dicotyledonous roots treated with Cd2+. These results suggest that the Cd-binding complex formation has an important role in the tolerance of cereal roots against Cd2+.  相似文献   

5.
Effect of Cd2+ toxicity and heat stress in sensitive rice cv. DR-92 and tolerant rice cv. Bh-1 grown in North East region of India were studied in sand cultures. Increasing levels of 0–500 μM Cd2+ alone and/or heat stress showed increased activities of superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and glutathione reductase enzymes which were associated with induced oxidative stress and altered enzyme activities. The values for SOD and POD activities were always more in cv. DR-92 whereas CAT and GR activities were higher in cv. Bh-1 in roots and shoots under Cd2+ or heat stress alone in sensitive cv. DR-92. Upon imposition of a combination of Cd2+ + heat the activities of SOD and POD decreased significantly in root/shoot of both the sensitive and tolerant rice varieties. A nine fold increase in GR activity under combination of heat + 100 μM Cd2+ stress in shoots of cv. Bh-1 at day 15 was noted when compared to controls. The dual stress combination of Cd2+ + heat did not alter catalase activity in vivo in both the rice varieties. Results suggest a time-specific and varietal distribution of the antioxidant enzymes in rice plants subjected to Cd2+ and/or heat stress. Tolerant cv. Bh-1 has better survival to combined stressors like Cd2+ and heat than sensitive rice cv. DR-92 and heat stress when given in combination with Cd2+ toxicity seem to mitigate the effect of Cd2+ stress alone in rice. The study indicates individual Cd2+ toxicity and heat stress and a combination of the two stresses to have separate implications on antioxidative defense mechanism in rice plants. Among enzymes of the defense apparatus ascorbate peroxidase and glutathione reductase appear to serve as an important component for better survival of rice plants under combination of Cd2+ + heat stress.  相似文献   

6.
7.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

8.
Aquatic carnivorous plants usually grow in shallow dystrophic waters poor in inorganic N and P. Utricularia australis was chosen as a model plant for its prolific distribution and great ecological plasticity. The photosynthetic CO2 compensation point and factors associated with investment in carnivory and capture of prey were measured in 17 U. australis micropopulations in Třeboň basin, Czech Republic, together with water chemistry factors at these sites differing greatly in their trophic level, water hardness, and prey availability. Apical shoot growth rate was estimated at some oligotrophic sites. The micropopulations differed greatly in the proportion of traps with animal prey (2.7–70%, mean 26%), trap proportion to total biomass (1.4–42%, mean 26%), mean trap biomass (0.7–63 μg trap−1, mean 19 μg), and maximum trap size (1–3 mm, mean 2.0 mm). CO2 compensation points ranged from 0.7 to 6.1 μM (mean 2.6 μM). A weak HCO3 use (compensation point 0.51 mM) was found in plants growing in alkaline water. Trap biomass proportion did not correlate significantly with prey capture and CO2 compensation points with ambient [CO2]. A very rapid apical growth (2.5–4.2 new nodes day−1) occurred in sand pits. Thus, HCO3 use in U. australis can be induced by growing at very high pH. CO2 compensation points resembled those known in other aquatic non-carnivorous plants. They did not reflect carnivory. In spite of very rapid apical shoot growth, the relative growth rate of U. australis can be zero in oligotrophic habitats without prey.  相似文献   

9.
Microorganisms isolated from sites contaminated with heavy metals usually possess a higher removal capacity than strains from regular cultures. Heavy metal-containing soil samples from an industrial dumpsite in Northern Portugal were accordingly collected; following enrichment under metal stress, a consortium of wild microalgae was obtained. Their ability to grow in the presence of, and their capacity to recover heavy metals was comprehensively studied; the datasets thus generated were fitted to by a combined model of biomass growth and metal uptake, derived from first principles. After exposure to 15 and 25 mg/L Zn2+ for 6 days, the microalgal consortium reached similar, or higher cell density than the control; however, under 50 and 65 mg/L Zn2+, 71% to 84% inhibition was observed. Growth in the presence of Hg2+ was significantly inhibited, even at a concentration as low as 25 μg/L, and 90% inhibition was observed above 100 μg/L. The maximum amount of Zn2+ removed was 21.3 mg/L, upon exposure to 25 mg/L for 6 day, whereas the maximum removal of Hg2+ was 335 μg/L, upon 6 day in the presence of 350 μg/L. The aforementioned mechanistic model was built upon Monod assumptions (including heavy metal inhibition), coupled with Leudeking–Piret relationships between the rates of biomass growth and metal removal. The overall fits were good under all experimental conditions tested, thus conveying a useful tool for rational optimisation of microalga-mediated bioremediation.  相似文献   

10.
Agrobacterium-mediated transformation, employing direct shoot organogenesis, allows for mature transgenic plants to be obtained quickly (3–4 mo). In this study, peanut (Arachis hypogaea L.) cultivars Florida-07, Georgia Green, Georgia Brown, New Mexico Valencia A, and VC-2 were selected to test their shoot induction response for use in future transformation experiments. Two types of cotyledon explants were examined, those that previously had an attached embryo axis upon cotyledon separation (explant A) and those that were embryo axis-free upon separation (explant B). Explants were placed onto a shoot induction medium with N 6-benzyladenine concentrations ranging from 10–80 μM for Florida-07, Georgia Green, and VC-2; 10–20 μM for Georgia Brown; and 10–640 μM for New Mexico Valencia A. Following a 4-wk culture period, explants were visually rated based on a scale of 1–4, where 1 indicated slight greening, but no growth, and 4 indicated greening, adventitious bud formation, as well as small leaf expansion. A difference in shoot induction was observed for the cotyledon explants examined (P > t = <0.0001). Explant A had greater shoot induction with a visual rating of 1.8 ± 0.1; explant B had a rating of 1.6 ± 0.1 (P > t = <0.0001). Additionally, cultivars responded to the culture conditions differently (cultivar × N 6-benzyladenine interaction). Georgia Green on 10 μM N 6-benzyladenine produced the most shoot buds (24.6%) and the highest visual rating (2.1), followed by VC-2 on 10 μM N 6-benzyladenine (22.1%, 1.8), New Mexico Valencia A on 640 μM N 6-benzyladenine (21.4%, 1.8), Georgia Brown on 80 μM N 6-benzyladenine (9.0%, 1.7), and Florida-07 on 40 μM N 6-benzyladenine (7.1%, 1.8). Of the tested varieties, Georgia Green, New Mexico Valencia A, and VC-2 were best suited for future transformation experiments based on their shoot bud production.  相似文献   

11.
Heavy metal pollution has become one of the most serious environmental problems today. To develop a more efficient plant to clean up heavy metal contaminated soils, a γ‐glutamylcysteine synthetase (GCS) cDNA, named PaGCS, was isolated by PCR from Phragmites australis. The PaGCS sequence was transformed via agroinfection into the heavy metal intolerant grass Agrostis palustris. Five confirmed transgenic A. palustris plants expressing PaGCS were compared with the wild‐type line for growth and Cd2+ accumulation, as well as for the expression of a number of phytochelatin synthesis and stress‐responsive enzymes when challenged with Cd2+ stress. GCS and phytochelatin synthase (PCS) were up‐regulated in the transgenic lines. All the transgenic lines accumulated more Cd2+ and phytochelatins (PCs) than the wild‐type line, and three of the five lines grew more effectively than the wild‐type after either five or 21 d of Cd2+ stress. Variation among the transgenics was observed for the distribution of Cd2+ in the root, shoot and leaf. The malondialdehyde content of all the transgenic lines was lower than that of the wild type under Cd2+ treatment, while the activity of both superoxide dismutase and peroxidase present in the transgenic lines increased markedly 24 h after Cd2+ stress, and then rapidly declined.  相似文献   

12.
Because of its prolific growth, oilseed rape (Brassica napus L.) can be grown advantageously for phytoremediation of the lands contaminated by industrial wastes. Therefore, toxic effect of cadmium on the germination of oilseed rape, the capability of plants for cadmium phytoextraction, and the effect of exogenous application of plant growth regulators to mitigate phytotoxicity of cadmium were investigated. For the lab study of seedlings at early stage, seeds were grown on filter papers soaked in different solutions of Cd2+ (0, 10, 50, 100, 200 and 400 μM). In greenhouse study, seedlings were grown in soil for 8 weeks, transferred to hydroponic pots for another 6 weeks growth, and then treated with plant growth regulators and cadmium. Four plant growth regulators viz. jasmonic acid (12.5 μM), abscisic acid (10 μM), gibberellin (50 μM) and salicylic acid (50 μM); and three levels of Cd2+ (0, 50 and 100 μM) were applied. Data indicated that lower concentration of Cd2+ (10 μM) promoted the root growth, whereas the severe stresses (200 or 400 μM) had negative effect on the establishment of germinating seedlings. Plants treated with any of the tested plant growth regulators alleviated cadmium toxicity symptoms, which were reflected by more fresh weight, less malondialdehyde concentration in leaves and lower antioxidant enzyme activities. The application of abscisic acid to the plants cultivated in the medium containing 100 μM Cd2+ resulted in significantly lower plant internal cadmium accumulation. Huabing Meng and Shujin Hua contributed equally to this paper.  相似文献   

13.
A two-step protocol for improving the frequency of shoot regeneration from oilseed rape (Brassica napus L.) hypocotyl explants was established. The protocol consists of a pre-culture on callus induction medium (CIM) and a subsequent shoot regeneration on shoot induction medium (SIM). The SIM was Murashige and Skoog medium supplemented with different concentrations of 6-benzylaminopurine (BA; 2–5 mg dm−3) and naphthaleneacetic acid (NAA; 0.05–0.15 mg dm−3). Maximum frequency of shoot regeneration (13 %) was on the SIM medium containing 4 mg dm−3 BA and 0.1 mg dm−3 NAA, but it increased to 24.45 % when 20 μM silver thiosulphate (STS) was added. Strikingly, an extremely high frequency of shoot regeneration up to 96.67 % was reached by a two-step protocol when hypocotyl explants had been pre-cultured for 7 d on a CIM medium containing 1.5 mg dm−3 2,4-dichlorophenoxyacetic acid. In addition, the shoot emergence was also 7 d earlier than that observed by use of the one-step protocol. The two-step protocol was also applied for regeneration of transgenic plants with cZR-3, a nematode resistance candidate gene. As a result, 43 plants were generated from 270 shoots and from these 6 plants proved to be transgenic.  相似文献   

14.
In Schizosaccharomyces pombe, Cd2+ shares the same uphill uptake system with Zn2+. Both heavy metals inhibited growth, respiration, H+/glucose uptake, and glucose-induced proton extrusion, Cd2+ being a 10–15-fold stronger inhibitor. In contrast, both had a similar effect on the plasma membrane H+-ATPase, enhancing its affinity for ATP and reducing the rate of ATP splitting. Cd2+ caused protracted strong fluidization of the plasma membrane of energized cells, whereas deenergized cells, phosphatidylcholine liposomes, and plasma membrane fragments, either purified or incorporated into the liposomes, exhibited only a short initial fluidization. Zn2+, which caused only a marginal membrane fluidization, suppressed the fluidizing action of Cd2+. The fluidizing effect of both heavy metals on liposomes was reduced by the presence of plasma membrane fragments in the liposome membrane. At 50 μM, Cd2+ brought about loss K+ (18 K+/1 Cd2+) from energized, but not from deenergized cells since Cd2+ must first accumulate in the cells before causing a detectable effect. A simple membrane disruption by external Cd2+ is, therefore, unlikely to be the main mechanism of cadmium-induced potassium loss in intact cells. Zn2+ had virtually no effect below 1 mM concentration, and it again weakened the K+-releasing effect of Cd2+. Cd2+ caused a strong loss of K+ also from K+-containing liposomes, probably because of a direct interaction with liposome phospholipids. Incorporation of plasma membrane fragments into the liposomes reduced the K+ loss sixfold. Received: 13 November 1995 / Accepted: 31 January 1996  相似文献   

15.
In this study, dried and humid fruiting bodies of Tremella fuciformis and Auricularia polytricha were examined as cost-effective biosorbents in treatment of heavy metals (Cd2+, Cu2+, Pb2+, and Zn2+) in aqueous solution. The humid T. fuciformis showed the highest capacity to adsorb the four metals in the multi-metal solutions. The Pb2+ adsorption rates were 85.5%, 97.8%, 84.8%, and 91.0% by dried T. fuciformis, humid T. fuciformis, dried A. polytricha, and humid A. polytricha, respectively. The adsorption amount of Pb2+ by dried and humid T. fuciformis in Cd2+ + Pb2+, Cu2+ + Pb2+, Pb2+ + Zn2+, Cd2+ + Cu2+ + Pb2+, and Cd2+ + Zn2+ + Pb2+ solutions were not lower than that in Pb2+ solutions. The results suggested that in humid T. fuciformis, Cd2+, Cu2+, and Zn2+ promoted the Pb2+ adsorption by the biomass. In the multi-metal solutions of Cd2+ + Cu2+ + Pb2+ + Zn2+, the adsorption amount and rates of the metals by all the test biosorbents were in the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. Compared with the pseudo first-order model, the pseudo second-order model described the adsorption kinetics much better, indicating a two-step biosorption process. The present study confirmed that fruiting bodies of the jelly fungi should be useful for the treatment of wastewater containing Cd2+, Cu2+, Pb2+, and Zn2+.  相似文献   

16.
邹淑华  邓平香  龙新宪 《微生物学报》2019,59(12):2306-2322
重金属胁迫对植物内生细菌群落结构的影响在很大程度上是未知的,目前也很少有研究超积累植物内生细菌的群落结构与多样性对根际土壤中重金属的响应。【目的】探索在不同镉污染水平下,超积累(HE)和非超积累生态型(NHE)东南景天的根系、茎和叶片中内生细菌的群落结构与多样性的变化及其差异性,试图从植物-内生菌之间的相互关系的角度补充解释2种生态型东南景天对有效态镉忍耐和积累能力的差异。【方法】采用Illumina新一代测序方法分析了在不同Cd~(2+)浓度土壤上生长的2种生态型东南景天根、茎和叶中的内生细菌群落结构。【结果】高浓度Cd~(2+)抑制NHE东南景天的生长,内生细菌的丰富度和多样性也降低;然而,高浓度Cd~(2+)促进HE东南景天的生长,茎和根系内生细菌的丰富度增加。在3种土壤上,2种生态型东南景天叶片、茎和根系内生细菌均以变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)占优势。随着土壤中Cd~(2+)浓度的增加,HE东南景天叶片中Gammaproteobacteria纲、Negativicutes纲和Clostridia纲的相对丰度显著增加,茎中Alphaproteobacteria纲的相对丰度显著增加,Clostridia纲的相对丰度显著减少;NHE东南景天叶片中Alphaproteobacteria纲、Gammaproteobacteria纲和Clostridia纲的相对丰度没有显著变化,茎中Negativicutes纲的相对丰度显著减少,根系中Betaproteobacteria纲和Clostridia纲的相对丰度显著减少,Negativicutes纲却显著增加。在高Cd~(2+)污染土壤(50mg/kg)上,HE东南景天叶片中Sphingomonas属和茎中Veillonella属的相对丰度均大于NHE,且HE东南景天根系内生细菌的第一、第二、第三优势菌Veillonella、Sphingomonas、Prevotella属细菌均没有出现在NHE东南景天根系。【结论】土壤Cd~(2+)污染水平对2种生态型东南景天叶、茎、根中的内生菌群落结构有显著影响。  相似文献   

17.
Nodules of faba bean (Vicia faba L. cv. Giza 3) plants grown in pots containing clay-loam soil for 90 d have an active nitrate reductase (NR), while the leaves did not show detectable activity. Spraying the plant with increasing concentrations of Al3+ or Cd2+ (0–1000 μM) significantly inhibited the nodules NR activity, the decline being more pronounced in Cd2+ treatment. The specific activity of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) were more prominent in the 60- than in 90-d-old plants; GOT was always higher than GPT. Furthermore, GOT was more sensitive to Al3+ and Cd2+ treatments and its activity was significantly decreased when the metal concentration increased. Also, Cd2+ proved to be more effective than Al3+ in suppressing the GOT activity in the nodules, with less significant effect observed in the leaves. In contrast, GPT was hardly affected by the various metal treatments, particulary in the leaves.  相似文献   

18.
Changes in the content of reactive oxygen species (ROS) and activity of the antioxidant system were measured in leaves of Arabidopsis thaliana (L.) Heynh exposed to Cd2+. Mature plants growing in the nutrient solution were treated with Cd2+ at different concentrations (0, 5, 25, 50, 100 μM). An increase of content in leaves was observed at 5, 25 and 50 μM Cd2+. A strong accumulation of H2O2 was found only at the lowest Cd2+ concentration. The content of OH*. was high at 50 and 100 μM Cd2+. Superoxide dismutase (SOD) activity was always higher in Cd2+-treated plants than in control. Catalase (CAT) activity decreased with increasing Cd2+ concentration in the nutrient solution. Guaiacol peroxidase (POX) activity was particularly high at the lowest and highest Cd2+ concentrations and ascorbate peroxidase (APX) activity additionally at 50 μM Cd2+. Enhanced activity of monodehydroascorbate reductase (MDHAR) and strong reduction in ascorbate (AA) content were observed at 25 μM Cd2+. Glutathione reductase (GR) activity was always higher than in control but decreased as Cd2+ concentration increased. However, it was accompanied by gradual content increase of SH-groups. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Transgenic torenia plants were obtained using the selectable marker gene phosphomannose isomerase (manA), which encodes the enzyme phosphomannose isomerase (PMI) to enable selection of transformed cells on media containing mannose. We found that shoot organogenesis in torenia leaf explants was effectively suppressed on medium supplemented with mannose, which indicated that torenia cells had little or no PMI activity and could not utilize mannose as a carbon source. Leaf pieces from in vitro-germinated plants were inoculated with Agrobacterium tumefaciens EHA105 containing the binary vector pKPJ with both hpt and ManA genes, and subsequently selected on shoot induction (SI) medium (half strength MS basal + 4.4 μM BA + 0.5 μM NAA) supplemented with 20 g l−1 mannose and 5 g l−1 sucrose as carbon sources. Transformed plants were confirmed by PCR and Southern blot. The transgene expression was evaluated using Northern blot and the chlorophenol red assay. The transformation efficiency ranged from 7% to 10%, which is 1–3% higher than that obtained by selection with hygromycin. This system provides an efficient manner for selecting transgenic flower plants without using antibiotics or herbicides.  相似文献   

20.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号