共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein folding is a complex multidimensional process that is difficult to illustrate by the traditional analyses based on one- or two-dimensional profiles. Analyses based on transition networks have become an alternative approach that has the potential to reveal detailed features of protein folding dynamics. However, due to the lack of successful reversible folding of proteins from conventional molecular-dynamics simulations, this approach has rarely been utilized. Here, we analyzed the folding network from several 10 μs conventional molecular-dynamics reversible folding trajectories of villin headpiece subdomain (HP35). The folding network revealed more complexity than the traditional two-dimensional map and demonstrated a variety of conformations in the unfolded state, intermediate states, and the native state. Of note, deep enthalpic traps at the unfolded state were observed on the folding landscape. Furthermore, in contrast to the clear separation of the native state and the primary intermediate state shown on the two-dimensional map, the two states were mingled on the folding network, and prevalent interstate transitions were observed between these two states. A more complete picture of the folding mechanism of HP35 emerged when the traditional and network analyses were considered together. 相似文献
2.
Vugmeyster L Trott O McKnight CJ Raleigh DP Palmer AG 《Journal of molecular biology》2002,320(4):841-854
(15)N spin relaxation experiments were used to measure the temperature-dependence of protein backbone conformational fluctuations in the thermostable helical subdomain, HP36, of the F-actin-binding headpiece domain of chicken villin. HP36 is the smallest domain of a naturally occurring protein that folds cooperatively to a compact native state. Spin-lattice, spin-spin, and heteronuclear nuclear Overhauser effect relaxation data for backbone amide (15)N spins were collected at five temperatures in the range of 275-305 K. The data were analyzed using a model-free formalism to determine generalized order parameters, S, that describe the distribution of N-H bond vector orientations in a molecular reference frame. A novel parameter, Lambda=dln(1-S)/dln T is introduced to characterize the temperature-dependence of S. An average value of Lambda=4.5 is obtained for residues in helical conformations in HP36. This value of Lambda is not reproduced by model potential energy functions commonly used to parameterize S. The maximum entropy principle was used to derive a new model potential function that reproduces both S and Lambda. Contributions to the entropy, S(r), and heat capacity, C(r)(p), from reorientational conformational fluctuations were analyzed using this potential energy function. Values of S(r) show a qualitative dependence on S similar to that obtained for the diffusion-in-a-cone model; however, quantitative differences of up to 0.5k, in which k is the Boltzmann constant, are observed. Values of C(r)(p) approach zero for small values of S and approach k for large values of S; the largest values of C(r)(p) are predicted to occur for intermediate values of S. The results suggest that backbone dynamics, as probed by relaxation measurements, make very little contribution to the heat capacity difference between folded and unfolded states for HP36. 相似文献
3.
Villin headpiece is a small autonomously folding protein that has emerged as a model system for understanding the fundamental tenets governing protein folding. In this communication, we employ NMR and X-ray crystallography to characterize a point mutant, H41F, which retains actin-binding activity, is more thermostable but, interestingly, does not exhibit the partially folded intermediate observed of either wild-type or other similar point mutants. 相似文献
4.
The villin headpiece subdomain (HP36) is a widely used system for protein-folding studies. Nuclear magnetic resonance cross-correlated relaxation rates arising from correlated fluctuations of two N-HN dipole-dipole interactions involving successive residues were measured at two temperatures at which HP36 is at least 99% folded. The experiment revealed the presence of motions slower than overall tumbling of the molecule. Based on the theoretical analysis of the spectral densities we show that the structural and dynamic contributions to the experimental cross-correlated relaxation rate can be separated under certain conditions. As a result, dynamic cross-correlated order parameters describing slow microsecond-to-millisecond motions of N-H bonds in neighboring residues can be introduced for any extent of correlations in the fluctuations of the two bond vectors. These dynamic cross-correlated order parameters have been extracted for HP36. The comparison of their values at two different temperatures indicates that when the temperature is raised, slow motions increase in amplitude. The increased amplitude of these fluctuations may reflect the presence of processes directly preceding the unfolding of the protein. 相似文献
5.
We perform a detailed comparison of fast backbone dynamics probed at amide nitrogen versus carbonyl carbon sites for dematin
headpiece C-terminal domain (DHP) and its S74E mutant (DHPS74E). Carbonyl dynamics is probed via auto-correlated longitudinal
rates and transverse C′/C′-Cα CSA/dipolar and C′/C′–N CSA/dipolar cross-correlated rates, while 15N data are taken from a previous study. Resulting values of effective order parameters and internal correlation times support
the conclusion that C′ relaxation reports on a different subset of fast motions compared to those probed at N–H bond vectors
in the same peptide planes. 13C′ order parameters are on the average 0.08 lower than 15N order parameters with the exception of the flexible loop region in DHP. The reduction of mobility in the loop region upon
the S74E mutation can be seen from the 15N order parameters but not from the 13C order parameters. Internal correlation times at 13C′ sites are on the average an order of magnitude longer than those at 15N sites for the well-structured C-terminal subdomains, while the more flexible N-terminal subdomains have more comparable
average internal correlation times. 相似文献
6.
The temperature dependence of the internal dynamics of recombinant human ubiquitin has been measured using solution NMR relaxation techniques. Nitrogen-15 relaxation has been employed to obtain a measure of the amplitude of subnanosecond motion at amide N-H sites in the protein. Deuterium relaxation has been used to obtain a measure of the amplitude of motion of methyl-groups in amino-acid side chains. Data was obtained between 5 and 55 degrees C. The majority of amide N-H and methyl groups show a roughly linear (R(2)>0.75) temperature dependence of the associated Lipari-Szabo model-free squared generalized-order parameter (O(2)) describing the amplitude of motion. Interestingly, for those sites showing a linear response, the temperature dependence of the backbone is distinct from that of the methyl-bearing side chains with the former being characterized by a significantly larger Lambda-value, where Lambda is defined as d ln(1 - O)/d lnT. These results are comparable to the sole previous such study of the temperature dependence of protein motion obtained for a calmodulin-peptide complex. This suggests that the distinction between the main chain and methyl-bearing side chains may be general. Insight into the temperature dependence is gathered from a simple two-state step potential model. 相似文献
7.
A hyperstable variant of the small independently folded helical subdomain (HP36) derived from the F-actin binding villin headpiece was designed by targeting surface electrostatic interactions and helical propensity. A double mutant N68A, K70M was significantly more stable than wild type. The Tm of wild type in aqueous buffer is 73.0 degrees C, whereas the double mutant did not display a complete unfolding transition. The double mutant could not be completely unfolded even by 10 M urea. In 3 M urea, the Tm of wild type is 54.8 degrees C while that of the N68AK70M double mutant is 73.9 degrees C. Amide H/2H exchange studies show that the pattern of exchange is very similar for wild type and the double mutant. The structures of a K70M single mutant and the double mutant were determined by X-ray crystallography and are identical to that of the wild type. Analytical ultracentrifugation demonstrates that the proteins are monomeric. The hyperstable mutant described here is expected to be useful for folding studies of HP36 because studies of the wild type domain have sometimes been limited by its marginal stability. The results provide direct evidence that naturally occurring miniature protein domains have not been evolutionarily optimized for global stability. The stabilizing effect of this double mutant could not be predicted by sequence analysis because K70 is conserved in the larger intact headpiece for functional reasons. 相似文献
8.
Vugmeyster L Ostrovsky D Khadjinova A Ellden J Hoatson GL Vold RL 《Biochemistry》2011,50(49):10637-10646
We have investigated microsecond to millisecond time scale dynamics in several key hydrophobic core methyl groups of chicken villin headpiece subdomain protein (HP36) using a combination of single-site labeling, deuteron solid-state NMR line shape analysis, and computational modeling. Deuteron line shapes of hydrated powder samples are dominated by rotameric jumps and show a large variability of rate constants, activation energies, and rotameric populations. Site-specific activation energies vary from 6 to 38 kJ/mol. An additional mode of diffusion on a restricted arc is significant for some sites. In dry samples, the dynamics is quenched. Parameters of the motional models allow for calculations of configurational entropy and heat capacity, which, together with the rate constants, allow for observation of interplay between thermodynamic and kinetic picture of the landscape. Mutations at key phenylalanine residues at both distal (F47L&F51L) and proximal (F58L) locations to a relatively rigid side chain of L69 have a pronounced effect on alleviating the rigidity of this side chain at room temperature and demonstrate the sensitivity of the hydrophobic core environment to such perturbations. 相似文献
9.
Dematin is an actin-binding protein abundant in red blood cells and other tissues. It contains a villin-type ‘headpiece’ F-actin-binding
domain at its extreme C-terminus. The isolated dematin headpiece domain (DHP) undergoes a significant conformational change
upon phosphorylation. The mutation of Ser74 to Glu closely mimics the phosphorylation of DHP. We investigated motions in the
backbone of DHP and its mutant DHPS74E using several complementary NMR relaxation techniques: laboratory frame 15N NMR relaxation, which is sensitive primarily to the ps–ns time scale, cross-correlated chemical shift modulation NMR relaxation
detecting correlated μs–ms time scale motions of neighboring 13C′ and 15N nuclei, and cross-correlated relaxation of two 15N–1H dipole–dipole interactions detecting slow motions of backbone NH vectors in successive amino acid residues. The results
indicate a reduction in mobility upon the mutation in several regions of the protein. The additional salt bridge formed in
DHPS74E that links the N- and C-terminal subdomains is likely to be responsible for these changes.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
10.
The villin headpiece (HP67) is a 67 residue, monomeric protein derived from the C-terminal domain of villin. Wild-type HP67 (WT HP67) is the smallest fragment of villin that retains strong in vitro actin-binding activity. WT HP67 is made up of two subdomains, which form a tightly packed interface. The C-terminal subdomain of WT HP67, denoted HP35, is rich in helical structure, folds in isolation, and has been widely used as a model system for folding studies. In contrast, very little is known about the folding of the intact villin headpiece domain. Here, NMR, CD and H/2H amide exchange measurements are used to follow the pH, thermal and urea-induced unfolding of WT HP67 and a mutant (HP67 H41Y) in which a buried conserved histidine in the N-terminal subdomain, His41, has been mutated to Tyr. Although most small proteins display two-state equilibrium unfolding, the results presented here demonstrate that unfolding of the villin headpiece is a multistate process. The presence of a folded N-terminal subdomain is shown to stabilize the C-terminal subdomain, increasing the midpoints of the thermal and urea-induced unfolding transitions and increasing protection factors for H/2H exchange. Histidine 41 has been shown to act as a pH-dependent switch in wild-type HP67: the N-terminal subdomain is unfolded when His41 is protonated, while the C-terminal subdomain remains folded irrespective of the protonation state of His41. Mutation of His41 to Tyr eliminates the segmental pH-dependent unfolding of the headpiece. The mutation stabilizes both domains, but folding is still multistate, indicating that His41 is not solely responsible for the unusual equilibrium unfolding behavior of villin headpiece domain. 相似文献
11.
The villin headpiece folds autonomously in vitro forming three alpha-helical regions. Local propensities, however, strongly disfavor the formation of the C-terminal helix because most native residue pairs in that helix are hydrophobic/polar mismatches. Even the N-terminal helix is unfavored according to the AGADIR criterion. Our coarse-grained ab initio simulations reveal three-body correlations in which hydrophobic residues position to protect amide-carbonyl hydrogen bonds from attack by water, thus inducing the growth of the C-terminal helix and guiding the folding process. Similar correlations are also found in all-atom simulations with an implicit solvent model that accurately reproduces the results of simulations with explicit solvent molecules. The correlations establish a large-scale, many-body context that may be probed experimentally by introducing mutations of certain nonobvious residues that reside outside the native hydrophobic core but that are predicted to affect the folding rates and dynamics dramatically. 相似文献
12.
Wickstrom L Okur A Song K Hornak V Raleigh DP Simmerling CL 《Journal of molecular biology》2006,360(5):1094-1107
The 36 residue villin headpiece helical subdomain (HP36) is one of the fastest cooperatively folding proteins, folding on the microsecond timescale. HP36's simple three helix topology, fast folding and small size have made it an attractive model system for computational and experimental studies of protein folding. Recent experimental studies have explored the denatured state of HP36 using fragment analysis coupled with relatively low-resolution spectroscopic techniques. These studies have shown that there is apparently only a small tendency to form locally stabilized secondary structure. Here, we complement the experimental studies by using replica exchange molecular dynamics with explicit solvent to investigate the structural features of these peptide models of unfolded HP36. To ensure convergence, two sets of simulations for each fragment were performed with different initial structures, and simulations were continued until these generated very similar final ensembles. These simulations reveal low populations of native-like structure and early folding events that cannot be resolved by experiment. For each fragment, calculated J-coupling constants and helical propensities are in good agreement with experimental trends. HP-1, corresponding to residues 41 to 53 and including the first alpha-helix, contains the highest helical population. HP-3, corresponding to residues 62 through 75 and including the third alpha-helix, contains a small population of helical turn residing at the N terminus while HP-2, corresponding to residues 52 through 61 and including the second alpha-helix, formed little to no structure in isolation. Overall, HP-1 was the only fragment to adopt a native-like conformation, but the low population suggests that formation of significant structure only occurs after formation of specific tertiary interactions. 相似文献
13.
The 36-residue helical subdomain of the villin headpiece, HP36, is one of the smallest cooperatively folded proteins, folding on the microsecond time scale. The domain is an extraordinarily popular model system for both experimental and computational studies of protein folding. The structure of HP36 has been determined using X-ray crystallography and NMR spectroscopy, with the resulting structures exhibiting differences in helix packing, van der Waals contacts, and hydrogen bonding. It is important to determine the solution structure of HP36 with as much accuracy as possible since this structure is widely used as a reference for simulations and experiments. We complement the existing data by using all-atom molecular dynamics simulations with explicit solvent to evaluate which of the experimental models is the better representation of HP36 in solution. After simulation for 50 ns initiated with the NMR structure, we observed that the protein spontaneously adopts structures with a backbone conformation, core packing, and C-capping motif on the third helix that are more consistent with the crystal structure. We also examined hydrogen bonding and side chain packing interactions between D44 and R55 and between F47 and R55, respectively, which were observed in the crystal structure but not in the NMR-based solution structure. Simulations showed large fluctuations in the distance between D44 and R55, while the distance between F47 and R55 remained stable, suggesting the formation of a cation-pi interaction between those residues. Experimental double mutant cycles confirmed that the F47-R55 pair has a larger energetic coupling than the D44-R55 interaction. Overall, these combined experimental and computational studies show that the X-ray crystal structure is the better reference structure for HP36 in solution at neutral pH. Our analysis also shows how detailed molecular dynamics simulations combined with experimental validation can help bridge the gap between NMR and crystallographic methods. 相似文献
14.
Study of early events in the protein folding of villin headpiece using molecular dynamics simulation
Protein folding is scientifically and computationally challenging problem. The early phases of protein folding are interesting due to various events like nascent secondary structure formation, hydrophobic collapse leading to formation of non-native or meta-stable conformations. These events occur within a very short time span of 100ns as compared to total folding time of few microseconds. It is highly difficult to observe these events experimentally due to very short lifetime. Molecular dynamics simulation technique can efficiently probe the detailed atomic level understanding about these events. In the present paper, all atom molecular dynamics simulation trajectory of nearly 200ns was carried out for fully solvated villin headpiece with PME treatment using AMBER 7 package. Initial hydrophobic collapse along with secondary structure formation resulted into formation of partially stable non-native conformations. The formation of secondary structural elements and hydrophobic collapse takes place simultaneously in the folding process. 相似文献
15.
The structure of the 36 residue villin headpiece subdomain is investigated with the electrostatically driven Monte Carlo method. The ECEPP/3 (Empirical Conformational Energy Program for Peptides) force field, plus two different continuum solvation models, were used to describe the conformational energy of the chain with both blocked and unblocked N and C termini. A statistical analysis of an ensemble of ab initio generated conformations was carried out, based on a comparison with a set of ten native-like structures derived from published experimental data, by using rigid geometry and NMR-derived constraints obtained at pH 3.7. The ten native-like structures satisfy the NMR-derived constraints. The whole ensemble of conformations of the terminally unblocked villin headpiece sub-domain, generated by using ECEPP/3 with a continuum solvation model, were subsequently evaluated at pH 3.7 with a potential function that includes ECEPP/3 combined with a fast multigrid boundary element method. At pH 3.7, the lowest-energy conformation found during the conformational search satisfies approximately 70% of both the distance and the dihedral-angle constraints, and possesses the characteristic packing of three phenylalanine residues that constitute the main part of the hydrophobic core of the molecule. On the other hand, computations at pH 3.7 and pH 7.0 for the ten native-like structures satisfying the NMR-derived constraints indicate a substantial change in the charge distribution for each type of amino acid residue with the change in pH. The results of this study provide a basis to understand the effect of the interactions, such as hydrophobicity, charge-charge interaction and solvent polarization, on the stability of this small alpha-helical protein. 相似文献
16.
The villin headpiece subdomain (HP36) is the smallest naturally occurring protein that folds cooperatively. The protein folds on a microsecond time scale. Its small size and very rapid folding have made it a popular target for biophysical studies of protein folding. Temperature-dependent one-dimensional (1D) NMR studies of the full-length protein together with CD and 1D NMR studies of the 21-residue peptide fragment (HP21) derived from HP36 have shown that there is significant structure in the unfolded state of HP36 and have demonstrated that HP21 is a good model of these interactions. Here, we characterized the model peptide HP21 in detail by two-dimensional NMR. Strongly upfield shifted C(alpha) protons, the magnitude of the 3J(NH,alpha) coupling constants, and the pattern of backbone-backbone and backbone-side chain NOEs indicate that the ensemble of structures populated by HP21 contains alpha-helical structure and native as well as non-native hydrophobic contacts. The hydrogen-bonded secondary structure inferred from the NOEs is, however, not sufficient to confer significant protection against amide H-D exchange. These studies indicate that there is significant secondary structure and hydrophobic clustering in the unfolded state of HP36. The implications for the folding of HP36 are discussed. 相似文献
17.
The villin headpiece subdomain is a cooperatively folded 36-residue, three-alpha-helix protein. The domain is one of the smallest naturally occurring sequences which has been shown to fold. Recent experimental studies have shown that it folds on the 10-micros time scale. Its small size, simple topology, and very rapid folding have made it an attractive target for computational studies of protein folding. We present temperature-dependent NMR studies that provide evidence for significant structure in the denatured state of the headpiece subdomain. A set of peptide fragments derived from the headpiece were also characterized in order to determine if there is a significant tendency to form a locally stabilized structure in the denatured state. Peptides corresponding to each of the three isolated helices and to the connection between the first and second helices were largely unstructured. A longer peptide fragment which contains the first and second helices shows considerable structure, as judged by NMR and CD. Concentration-dependent CD measurements and analytical ultracentrifugation experiments indicate that the structure is not due to self-association. NMR studies indicate that the structure is stabilized by tertiary interactions involving phenylalanines and Val 50. A peptide in which two of the three phenylalanines are changed to leucine is considerably less structured, confirming the importance of the phenylalanines. This work indicates that there is significant structure in the denatured state of this rapidly folding protein. 相似文献
18.
We have used laser temperature-jump to investigate the kinetics and mechanism of folding the 35 residue subdomain of the villin headpiece. The relaxation kinetics are biphasic with a sub-microsecond phase corresponding to a helix-coil transition and a slower microsecond phase corresponding to overall unfolding/refolding. At 300 K, the folding time is 4.3(+/-0.6) micros, making it the fastest folding, naturally occurring protein, with a rate close to the theoretical speed limit. This time is in remarkable agreement with the prediction of 5 (+11,-3) micros by Zagrovic et al. from atomistic molecular dynamics simulations using an implicit solvent model. We test their prediction that replacement of the C-terminal phenylalanine residue with alanine will increase the folding rate by removing a transient non-native interaction. We find that the alanine substitution has no effect on the folding rate or on the equilibrium constant. Implications of this result for the validity of the simulated folding mechanism are discussed. 相似文献
19.
Villin-type headpiece domains are compact F-actin-binding motifs that have been used extensively as a model system to investigate protein folding by both experimental and computational methods. Villin headpiece (HP67) harbors a highly helical, thermostable, and autonomously folding subdomain in the C terminus (HP35), and because of this feature, HP67 is usually considered to be composed of a N- and C-terminal subdomain. Unlike the C-terminal subdomain, the N-terminal subdomain consists mainly of loops and turns, and the folding is dependent upon the presence of the C-terminal subdomain. The pH sensitivity of this subdomain is thought to arise from, at least partially, protonation of H41 buried in the hydrophobic core. Substitution of this histidine with tyrosine, another permissive residue at this position for naturally occurring sequences, increases not only the pH stability of HP67 but also the thermal stability and the cooperativity of thermal unfolding over a wide pH range (0.9-7.5). The crystal structures of wild-type HP67 and the H41Y mutant, determined under the same conditions, indicate that the H41Y substitution causes only localized rearrangement around the mutated residue. The F-actin-binding motif remains essentially the same after the mutation, accounting for the negligible effect of the mutation on F-actin affinity. The hydrogen bond formed between the imidazole ring of H41 and the backbone carbonyl of E14 of HP67 is eliminated by the H41Y mutation, which renders the extreme N terminus of H41Y more mobile; the hydrogen bond formed between the imidazole ring of H41 and the backbone nitrogen of D34 is replaced with that between the hydroxyl group of Y41 and the backbone nitrogen of D34 after the H41Y substitution. The increased hydrophobicity of tyrosine compensates for the loss of hydrogen bonds in the extreme N terminus and accounts for the increased stability and cooperativity of the H41Y mutant. 相似文献
20.
We investigate the landscape of the internal free-energy of the 36 amino acid villin headpiece with a modified basin hopping method in the all-atom force field PFF01, which was previously used to predictively fold several helical proteins with atomic resolution. We identify near native conformations of the protein as the global optimum of the force field. More than half of the twenty best simulations started from random initial conditions converge to the folding funnel of the native conformation, but several competing low-energy metastable conformations were observed. From 76,000 independently generated conformations we derived a decoy tree which illustrates the topological structure of the entire low-energy part of the free-energy landscape and characterizes the ensemble of metastable conformations. These emerge as similar in secondary content, but differ in tertiary arrangement. 相似文献