首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
N I Liu  R L Kay 《Biochemistry》1977,16(15):3484-3486
The effect of pressure on the phase transition temperature for the dipalmitoyllecithin bilayer was redetermined by following the volume change accompanying the transition. These measurements were carried out isothermally with the transition from the ordered to the disordered phase induced by decreasing the pressure. This contrasts with our previous measurements which were carried out at constant pressure and increasing temperature. The transition at every temperature was sharp and confirmed our previous observation that the volume change associated with the transition (0.033 mL g-1) is invariant with pressure. However, our present measurements, in contrast to our previous results, indicate that dP m/dTm at all pressures is in agreement with the 1 atm value of delta H/Tm delta V within experimental error where Tm and Pm are the temperature and pressure of the phase transition, respectively. These results, which are now in agreement with all other known pressure data, indicate that the entropy change associated with the transition is invariant with pressure.  相似文献   

2.
The pressure induced structural and mechanical properties of nanocrystalline ZnO, ZnS, ZnSe, GaN, CoO, CdSe, CeO(2), SnO(2), SiC, c-BC(2)N, and β-Ga(2)O(3) with different grain sizes have been analyzed under high pressures. The molecular dynamics simulation model has been used to compute isothermal equation of state, volume collapse and bulk modulus of these materials in nano and bulk phases at ambient and high pressures and compared with the experimental data. It is evident from these calculations that the change in particle size affects directly the phase transition pressure and bulk modulus. The values of phase transition pressure and bulk modulus increase with decrease in grain size of the material. The equilibrium cell volume and volume collapse in parent phase is directly proportional to the grain size of the materials. Present results are in good agreement with experimental data. The model is able to explain these thermodynamic properties at varying temperatures and pressures successfully.  相似文献   

3.
A statistical thermodynamic model of phospholipid bilayers is developed. In the model, a new concept of a closely packed system is applied, i.e., a system of hard cylinders of equal radii, the radius being a function of the average number of gauche rotations in a hydrocarbon chain. Using this concept of a closely packed system, reasonable values are obtained for the change in specific volume at the order-disorder transition of lecithin bilayers. In addition to interactions between the lipid matrix and water molecules, between the head groups themselves and between hydrocarbon chains, as well as the intramolecular energy associated with chain conformation, the Hamiltonian of the membrane also includes the energy of the pressure field. Thus, the phase transition of phospholipid membranes induced not only by temperature hut also by hydrostatic pressure is described by this model simultaneously. In accordance with the experimental results, a linear relationship is obtained between the phase transition temperature and phase transition pressure. The other calculated phase transition properties of lecithin homologues. e.g., changes in enthalpy, surface area. thickness and gauche number per chain are in agreement with the available experimental data. The ratio of kink to interstitial conduction of bilayers is also estimated.  相似文献   

4.
A method for simultaneous and in situ analysis of thermal and volumetric properties of starch gelatinization from 0.1 to 100 MPa and from 283 to 430 K is described. The temperature of a very sensitive calorimetric detector containing a starch-water emulsion at a selected pressure is programmed to rise at a slow rate; volume variations are performed automatically to keep the selected pressure constant while the heat exchange rate and the volume are recorded. The method is demonstrated with a novel investigation of pressure effects on a sequence of three phase transitions in an aqueous emulsion of wheat starch (56 wt % water). The volume changes during the main endothermic transition (M), associated with melting of the crystalline part of the starch granules and a helix-coil transformation in amylopectin, but also with an important swelling, were separated into a volume increase associated with swelling and a volume decrease associated with the transition itself. Thermodynamic parameters for this transition together with their pressure dependencies have been obtained from four independent experiments at each pressure. The data are thermodynamically consistent, but are poorly described by the Clapeyron equation. The negative volume change of the slow exothermic transition (A) appearing just after the main endothermic transition (M) is small, spread out over a wide temperature interval, and occurs at higher temperatures with increasing pressures. This transition is probably associated with reassociation of the unwound helixes of amylopectin with parts of amylopectin molecules other than their original helix duplex partner. The positive volume change of the high-temperature, endothermic transition (N) with a small enthalpy change is probably associated with a nematic-isotropic transformation ending the formation of a homogeneous SOL phase (in the sense of Flory), and is also pushed to higher temperatures with increasing pressures. Knowledge of the state of wheat starch as a function of pressure and temperature is important in extruder processing. The data also provide a basis for the elliptic phase diagram for starch gelatinization. The method is easily adapted to determine similar data for other macromolecular materials.  相似文献   

5.
The pressure-induced crystal properties of Eu chalcogenides were investigated using two different models: a modified charge-transfer potential model consisting of Coulomb screening due to the delocalization of the f electron of the rare earth atom, and modified by covalency and zero-point energy effects along with attractive and repulsive interactions; and a charge-transfer model that excluded the covalency and zero-point energy effects in the previous model. Both models were used to visualize the effect of covalency on the mechanism of interaction of the constituent atoms. Eu chalcogenides transform from the Fm3m to the Pm3m phase under the influence of sufficient pressure (P(T) = 39.52, 21.01, 14.31, and 10.58 GPa), and their equations of state indicated decreases in volume during this phase transition of 6.38, 12.32, 12.76, and 11.15%, respectively, for EuO, EuS, EuSe, and EuTe. The results obtained from the models were in good agreement with corresponding experimental data. The elastic constants and Debye temperatures were also computed at normal and high pressures. Both of the models were found to be capable of successfully explaining these properties.  相似文献   

6.
An empirical model of a liquid crystalline (L alpha phase) phosphatidylcholine (PC) bilayer interface is presented along with a function which calculates the position-dependent energy of associated solutes. The model approximates the interface as a gradual two-step transition, the first step being from an aqueous phase to a phase of reduced polarity, but which maintains a high enough concentration of water and/or polar head group moieties to satisfy the hydrogen bond-forming potential of the solute. The second transition is from the hydrogen bonding/low polarity region to an effectively anhydrous hydrocarbon phase. The "interfacial energies" of solutes within this variable medium are calculated based upon atomic positions and atomic parameters describing general polarity and hydrogen bond donor/acceptor propensities. This function was tested for its ability to reproduce experimental water-solvent partitioning energies and water-bilayer partitioning data. In both cases, the experimental data was reproduced fairly well. Energy minimizations carried out on beta-hexyl glucopyranoside led to identification of a global minimum for the interface-associated glycolipid which exhibited glycosidic torsion angles in agreement with prior results (Hare, B.J., K.P. Howard, and J.H. Prestegard. 1993. Biophys. J. 64:392-398). Molecular dynamics simulations carried out upon this same molecule within the simulated interface led to results which were consistent with a number of experimentally based conclusions from previous work, but failed to quantitatively reproduce an available NMR quadrupolar/dipolar coupling data set (Sanders, C.R., and J.H. Prestegard. 1991. J. Am. Chem. Soc. 113:1987-1996). The proposed model and functions are readily incorporated into computational energy modeling algorithms and may prove useful in future studies of membrane-associated molecules.  相似文献   

7.
A constant pressure ab initio MD technique and density functional theory with a generalized gradient approximation (GGA) was used to study the pressure-induced phase transition in wurtzite ZnTe. A first-order phase transition from the wurtzite structure to a Cmcm structure was successfully observed in a constant-pressure molecular dynamics simulation. This phase transformation was also analyzed using enthalpy calculations. We also investigated the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations, and found that both structures show quite similar equations of state and transform into a Cmcm structure at 16 GPa using enthalpy calculations, in agreement with experimental observations. The transition phase, lattice parameters and bulk properties we obtained are comparable with experimental and theoretical data.  相似文献   

8.
By use of neutron diffraction for structural analysis, the temperature-pressure phase diagrams of several fully hydrated single-component phospholipid bilayers have been explored up to hydrostatic pressures of 2 kbars. The gel to liquid-crystalline phase transition temperature Tm increases linearly with pressure over a 10(-3)-2 kbar range in accordance with the Clausius-Clapeyron relationship giving dTm/dP values of 23.0 degrees C/kbar for 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and 28.0 degrees C/kbar for 1,2-distearoyl-sn-glycero-3-phosphatidylcholine (DSPC). The so-called pretransition was not observed in the isothermal pressure experiments, suggesting that no appreciable volume change occurs at this transition. These results are in good agreement with those reported using other techniques. In addition, at pressures higher than the isothermal liquid-crystalline to gel transition pressure, a new pressure-induced phase transition was observed for DPPC and DSPC in which the hydrocarbon chains from apposing monolayers become interdigitated with the chains occupying a cross-sectional area approximately equal to 5% less than in the gel phase. The temperature-pressure phase diagrams show the gel-interdigitated phase boundaries to be highly curved and the minimum pressure at which interdigitation occurs to decrease with increasing hydrocarbon chain length.  相似文献   

9.
10.
The potentiometric titration of poly(glutamic acid) with special attention to its helix-coil transition is investigated in terms of the previously developed Monte Carlo method. The simulations of the potentiometric titration are carried out for helical and coiled form of the peptide, separately. A cylindrical rod with spherical ionizable groups is adopted as each conformational model of poly(glutamic acid) molecule. A spherical charge with a hard core potential is assumed as a mobile hydrated ion. The helix-coil transition curves are analyzed by the Zimm-Bragg theory. A satisfactory agreement is achieved for the titration curves with the experimental data in most cases. The significance and the limitations of the simulation method are discussed.  相似文献   

11.
Li H  Wang Z  Wang X  Lam KY 《Biophysical chemistry》2005,118(2-3):57-68
The influences of the bathing solution and crosslink density on the swelling equilibrium of ionic thermo-sensitive hydrogels due to temperature stimulus are studied by mathematical modeling. The model used is termed the multi-effect-coupling thermal-stimulus (MECtherm) model with consideration of multiphases and multiphysics. It is used for the steady-state numerical simulation of the hydrogels in swelling equilibrium after it is verified well by comparison with available experimental data concerning the variation of volume swelling ratio with temperature. The phenomenon of volume phase transition is simulated for the thermal-stimulus responsive hydrogel. Simulations predict well the influences of the bathing solution concentration and crosslink density of polymeric network on the swelling equilibrium of the hydrogels.  相似文献   

12.
Measurement of the equilibrium distribution of persistence length fragments of DNA in high concentration in the ultracentrifuge shows that the reduced osmotic pressure rises much faster than linearly. From analysis of the data in terms of the Zimm cluster integral we infer that the net interactions between helices are purely repulsive at all distances. A theoretical equation of state derived from scaled particle theory with one adjustable parameter is in excellent agreement with the experimental data so long as the salt concentration is not excessively low. The parameter represents the hard-core radius in a simplified approximation to the potential function for the electrostatic repulsion between helices. Its value depends on the salt concentration, and it shrinks at high salt to a radius in close agreement with direct structural estimates. At a particular value of the osmotic pressure that is only slightly salt dependent, the solution undergoes a reversible transition to a denser, turbid, optically anisotropic phase. The relation between DNA volume fraction, including the electrostatic radius, at the transition point and the effective asymmetry of the molecules as a function of salt is in approximate correspondence with various theoretical treatments. However, the experimental function extrapolates to the correct limit for spherical particles. The work needed to bring DNA to a high concentration is estimated. The results suggest that the phase transition is first order.  相似文献   

13.
The geometric and electronic structure of donor-acceptor complexes of TCNE with aniline, o-, m- and p- aminopyridines and pyridine has been studied in gas phase and in solution using CC2, TDDFT and CIS methods. Concerning interaction energy between particular donor and TCNE acceptor it is fairly described by both CC2 (MP2) and DFT-D approaches. Transition energies in gas phase calculated by CC2 approach are in good agreement with available experimental data for aniline. TDDFT calculations with LC-BLYP functional (with standard value of range separation factor μ?=?0.47) gives transition energies too high although not as high as CIS. The red solvent shifts, calculated by PCM model with CIS method are qualitative correct, but error in the range of 0.1-0.2 eV should be expected.  相似文献   

14.
The measurement of the volume of intact, viable cells presents challenging problems in many areas of experimental and diagnostic science involved in the evaluation of cellular morphology, growth and function. This investigation details the implementation of a recently developed quantitative phase microscopy (QPM) method to measure the volume of erythrocytes under a range of osmotic conditions. QPM is a computational approach which utilizes simple bright field optics to generate cell phase maps which, together with knowledge of the cellular refractive index, may be used to measure cellular volume. Rat erythrocytes incubated in imidazole-buffered solutions (22 degrees C) of graded tonicity were analysed using QPM (n=10 cells/group, x63, 0.8 NA objective). Erythrocyte refractive index (1.367) was measured using a combination of phase and morphological data obtained from cells adopting spherical geometry under hypotonic conditions. Phase-computed volume increased with decreasing solution osmolality: 42.8 +/- 2.4, 48.7 +/- 2.3, 62.6 +/- 2.3, 90.8 +/- 7.7 microm3 in solutions of 540, 400, 240, and 170 mosmol/kg respectively. These volume changes were associated with crenated, bi-concave and spherical morphological states associated with increasing tonicity. This investigation demonstrates that QPM is a valid, simple and non-destructive approach for measuring cellular phase properties and volume. QPM cell volume analysis represents a significant advance in viable cell experimental capability and provides for acquisition of 'real-time' data - an option not previously available using other approaches.  相似文献   

15.
Parameter estimation studies have been conducted employing mathematical models developed previously by the investigators and experimental data collected by the last author. A batch fermentation process in which Candida lipolytica were cultured on n-hexadecane dissolved in dewaxed gas oil was employed to obtain the experimental data. The kinetic data from a number of batch experiments conducted at different initial substrate concentrations and different dispersed phase volume fractions were analyzed assuming that, the basic model parameters (maximum specific growth rate, saturation constant, substrate phase equilibrium constant, adsorption constant, desorption constant, etc.) did not change from experiment to experiment. The Gauss-Newton method with modification by Greenstadt, Eisenpress, Bard, and Carroll was used to minimize the conventional sum of squares criterion on the IBM 300/50 computer. The individual confidence intervals were obtained for each individual parameter. Tin- models were compared employing the F-test for equality of variances and an analysis of residuals. For the two best models, the estimated parameter values were compared with available experimental information. The results showed good agreement between the experimental data and the values predicted by the mathematical models. The results presented in this work did suggest that growth on small segregated drops may be more important than continuous phase growth on dissolved substrate.  相似文献   

16.
The pressure dependence of the pre- and subtransitions is explained by a statistical physical model. Using this theoretical model the shift of the transition temperatures can be shown to be in agreement with the experimental results. Both the hysteresis effect which appears at standard pressure and the absence of the hysteresis at high pressures are explained.  相似文献   

17.
A new coarse-grained model of the E. coli cytoplasm is developed by describing the proteins of the cytoplasm as flexible units consisting of one or more spheres that follow Brownian dynamics (BD), with hydrodynamic interactions (HI) accounted for by a mean-field approach. Extensive BD simulations were performed to calculate the diffusion coefficients of three different proteins in the cellular environment. The results are in close agreement with experimental or previously simulated values, where available. Control simulations without HI showed that use of HI is essential to obtain accurate diffusion coefficients. Anomalous diffusion inside the crowded cellular medium was investigated with Fractional Brownian motion analysis, and found to be present in this model. By running a series of control simulations in which various forces were removed systematically, it was found that repulsive interactions (volume exclusion) are the main cause for anomalous diffusion, with a secondary contribution from HI.  相似文献   

18.
Changes in muscle fiber orientation across the wall of the left ventricle (LV) cause the apex of the heart to turn 10-15 deg in opposition to its base during systole and are believed to increase stroke volume and lower wall stress in healthy hearts. Studies show that cardiac torsion is sensitive to various disease states, which suggests that it may be an important aspect of cardiac function. Modern imaging techniques have sparked renewed interest in cardiac torsion dynamics, but no work has been done to determine whether mechanically augmented apical torsion can be used to restore function to failing hearts. In this report, we discuss the potential advantages of this approach and present evidence that turning the cardiac apex by mechanical means can displace a clinically significant volume of blood from failing hearts. Computational models of normal and reduced-function LVs were created to predict the effects of applied apical torsion on ventricular stroke work and wall stress. These same conditions were reproduced in anesthetized pigs with drug-induced heart failure using a custom apical torsion device programmed to rotate over various angles during cardiac systole. Simulations of applied 90 deg torsion in a prolate spheroidal computational model of a reduced-function pig heart produced significant increases in stroke work (25%) and stroke volume with reduced fiber stress in the epicardial region. These calculations were in substantial agreement with corresponding in vivo measurements. Specifically, the computer model predicted torsion-induced stroke volume increases from 13.1 to 14.4 mL (9.9%) while actual stroke volume in a pig heart of similar size and degree of dysfunction increased from 11.1 to 13.0 mL (17.1%). Likewise, peak LV pressures in the computer model rose from 85 to 95 mm Hg (11.7%) with torsion while maximum ventricular pressures in vivo increased in similar proportion, from 55 to 61 mm Hg (10.9%). These data suggest that: (a) the computer model of apical torsion developed for this work is a fair and accurate predictor of experimental outcomes, and (b) supra-physiologic apical torsion may be a viable means to boost cardiac output while avoiding blood contact that occurs with other assist methods.  相似文献   

19.
A biphasic, anisotropic model of the aortic wall   总被引:4,自引:0,他引:4  
A biphasic, anisotropic elastic model of the aortict wall is developed and compared to literature values of experimental measurements of vessel wall radii, thickness, and hvdraulic conductivity as a function of intraluminal pressure. The model gives good predictions using a constant wall modulus for pressures less than 60 mmHg, but requires a strain-dependent modulus for pressures greater than this. In both bovine and rabbit aorta, the tangential modulus is found to be approximately 20 times greater than the radial modulus. These moduli lead to predictions that, when perfused in a cylindrical geometry, the aortic volume and its specific hydraulic coonductivity are relatively independent of perfusion pressure, in agreement with experimental measurements. M, the parameter that relates specific hydraulic conductivy, to tissue dilation, is found to be a positive quantity correcting a previous error in the literature.  相似文献   

20.
A model is proposed to account for the observation that the denaturation of small proteins apparently occurs in two kinetic phases. It is suggested that only one of these phases--the fast one--is actually an unfolding process. The slow phase is assumed to arise from the cis-trans isomerism of proline residues in the denaturated protein. From model compound data, it is shown that the expected rate for isomerism is in satisfactory agreement with the rates actually observed for protein folding. It is also shown that a simple model of protein unfolding based on the isomerism concept is very successful in accounting for many known experimental characteristics of the kinetics and thermodynamic of protein denaturation. Thus, the model is able to predict that two kinetic phases will be seen in the transition region while none are seen in the base-line regions, that both the fast and slow refolding phases lead to the native protein as the product, that the fast phase becomes the only observable phase for jumps ending far in the denatured base-line region, that most or all small proteins show a limiting low-temperature activation energy of ca. 20,000 cal, and that the relaxtion time for the slow phase seen in cytochrome c denaturation is much shorter than for all other small proteins. By utilizing "double-jump" experiments, it is shown directly that the slow phase is not part of the unfolding process but that it corresponds to a transition among two or more denatured forms which have identical spectroscopic (286.5 nm) properties. Thus, the slow relaxation is "invisible" except in the transition region where it couples to the fast unfolding equilibrium. Finally, since the present model assumes that only one of the major kinetic phases seen in denaturation reactions is concerned with the denaturation process per se, it is in agreement with numerous thermodynamic studies which show consistency with the two-state model for unfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号