首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia. In SMAP2-deficient spermatids, the diameter of proacrosomal vesicles budding from TGN increases, TGN structures are distorted, acrosome formation is severely impaired, and reorganization of the nucleus does not proceed properly. CALM functions to regulate vesicle sizes, and this study shows that CALM is not recruited to the TGN in the absence of SMAP2. Furthermore, syntaxin2, a component of the soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complex, is not properly concentrated at the site of acrosome formation. Thus this study reveals a link between SMAP2 and CALM/syntaxin2 in clathrin-coated vesicle formation from the TGN and subsequent acrosome formation. SMAP2-deficient mice provide a model for globozoospermia in humans.  相似文献   

2.
John M. Healy 《Zoomorphology》1982,101(3):197-214
Summary Spermiogenesis of the architectonicid Philippia (Psilaxis) oxytropis was studied using transmission electron microscopy. Both spermatids and mature sperm of Philippia show features comparable to sperm/spermatids of euthyneuran gastropods (opisthobranchs, pulmonates) and not mesogastropods (with which the Architectonicidae are commonly grouped). These features include: (1) Accumulation of dense material on the outer membrane of anterior of the early spermatid nucleus — this material probably incorporated into the acrosome; (2) Structure of the unattached and attached spermatid acrosome (apical vesicle, acrosomal pedestal) accompanied by curved (transient) support structures; (3) Formation of the midpiece by individual mitochondrial wrapping around the axonemal complex, and the subsequent fusion and metamorphosis of the mitochondria to form the midpiece; (4) Presence of periodically banded coarse fibres surrounding the axonemal doublets and intra-axonemal rows of granules. A glycogen piece occurs posterior to the midpiece but is a feature observed in both euspermatozoa of mesogastropods (and neogastropods) and in sperm of some euthyneurans.Despite the lack of paracrystalline material or glycogen helices within the midpiece (both usually associated with sperm of euthyneurans), the features of spermiogenesis and sperm listed indicate that the Architectonicidae may be more appropriately referable to the Euthyneura than the Prosobranchia.Abbreviations a acrosome - ap anterior region of acrosomal pedestal - as support structures of spermatid acrosome - av apical vesicle of acrosome (acrosomal vesicle of un-attached acrosome) - ax axoneme - b basal region of acrosomal pedestal - c centriole - cf coarse fibres - cr cristal derivative of midpiece - db intra-axonemal dense granules - drs dense ring structure - gg glycogen granules - gp glycogen piece - G Golgi complex - m mitochondrion - mt microtubules - n nucleus - pm plasma membrane - sGv small Golgi vesicles  相似文献   

3.
尼罗罗非鱼精子形成中核内囊泡的释放   总被引:16,自引:3,他引:13  
尤永隆  林丹军 《动物学报》1998,44(3):257-263
通过透射电镜观察了尼罗罗非鱼的精子形成过程。尼罗罗非鱼精子细胞在成熟过程中,细胞核中出现由双层生物膜构成的囊泡。囊泡中均匀分布着电子密度低的物质。该囊泡逐渐从细胞核内排到细胞核外。在此过程中细胞核不但排出不参与染色质浓缩的物质,还将多余的核膜排出。进入袖套的囊泡可以留在精子的袖套中,而排到核前方和核侧面的囊泡继续以出芽的方式排出精子细胞。尼罗罗非鱼成熟精子的头部仅有染色质高度浓缩的细胞核。细胞核前  相似文献   

4.
Testicular samples were collected to describe the ultrastructure of spermiogenisis in Alligator mississipiensis (American Alligator). Spermiogenesis commences with an acrosome vesicle forming from Golgi transport vesicles. An acrosome granule forms during vesicle contact with the nucleus, and remains posterior until mid to late elongation when it diffuses uniformly throughout the acrosomal lumen. The nucleus has uniform diffuse chromatin with small indices of heterochromatin, and the condensation of DNA is granular. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. Once the acrosome has completed its development, the nucleus of the early elongating spermatid becomes associated with the cell membrane flattening the acrosome vesicle on the apical surface of the nucleus, which aids in the migration of the acrosomal shoulders laterally. One endonuclear canal is present where the perforatorium resides. A prominent longitudinal manchette is associated with the nuclei of late elongating spermatids, and less numerous circular microtubules are observed close to the acrosome complex. The microtubule doublets of the midpiece axoneme are surrounded by a layer of dense staining granular material. The mitochondria of the midpiece abut the proximal centriole resulting in a very short neck region, and possess tubular cristae internally and concentric layers of cristae superficially. A fibrous sheath surrounds only the axoneme of the principal piece. Characters not previously described during spermiogenesis in any other amniote are observed and include (1) an endoplasmic reticulum cap during early acrosome development, (2) a concentric ring of endoplasmic reticulum around the nucleus of early to middle elongating spermatids, (3) a band of endoplasmic reticulum around the acrosome complex of late developing elongate spermatids, and (4) midpiece mitochondria that have both tubular and concentric layers of cristae. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The acrosome is a secretory vesicle attached to the nucleus of the sperm. Our hypothesis is that microtubules participate in the membrane traffic between the Golgi apparatus and acrosome during the first steps of spermatid differentiation. In this work, we show that nocodazole-induced microtubule depolarization triggers the formation of vesicles of the acrosomal membrane, without detaching the acrosome from the nuclear envelope. Nocodazole also induced fragmentation of the Golgi apparatus as determined by antibodies against giantin, golgin-97 and GM130, and electron microscopy. Conversely, neither the acrosome nor the Golgi apparatus underwent fragmentation in elongating spermatids (acrosome- and maturation-phase). The microtubule network of round spermatids of azh/azh mice also became disorganized. Disorganization correlated with fragmentation of the acrosome and the Golgi apparatus, as evaluated by domain-specific markers. Elongating spermatids (acrosome and maturation-phase) of azh/azh mice also had alterations in microtubule organization, acrosome, and Golgi apparatus. Finally, the spermatozoa of azh/azh mice displayed aberrant localization of the acrosomal protein sp56 in both the post-acrosomal and flagellum domains. Our results suggest that microtubules participate in the formation and/or maintenance of the structure of the acrosome and the Golgi apparatus and that the organization of the microtubules in round spermatids is key to sorting acrosomal proteins to the proper organelle.  相似文献   

6.
东方扁虾精子发生的超微结构   总被引:2,自引:0,他引:2  
应用电镜技术研究了东方扁虾(Thenus orientalis)精子发生的全过程,精原细胞呈椭圆形,其染色质分布较均匀,线粒体集中于细胞一端形成“线粒体区”。初级精母细胞较大,染色质凝聚成块,次级精母细胞核质间常出现大的囊泡,胞质内囊泡丰富而线粒体数量却明显减少,早期精细胞核发生极化、解聚,部分胞质被抛弃。中期精细胞外观呈金字塔形,分为三区;正在形成的顶体位于塔顶,核位于塔基部,居间的细胞质基质内富含膜复合物,后期精细胞顶体进一步分化。形成顶体帽和内、外顶体物质等三个结构组份。成熟精子核呈盘状或碗状,具有5-6条内部充满微管的辐射臂。  相似文献   

7.
Prohibitin plays a key role in maintaining mitochondrial membrane integrity and retaining its normal function. We have initially cloned and sequenced the cDNA of prohibitin from testis of the crab Eriocheir sinensis. The 1,357 bp Prohibitin cDNA comprises a 105 bp 5′ untranslated region, a 427 bp 3′ untranslated region and a 825 bp open reading frame. Protein alignment substantiates that the Prohibitin has 70.2, 69.8, 70.5, 70.9, 72.4, 70.6 and 74.9% identity with its homologues in Mus musculus, Homo sapiens, Gallus gallus, Danio rerio, Xenopus tropicalis, Drosophila mojavensis and Aedes aegypti, respectively. In situ hybridization revealed that the Prohibitin mRNA was mainly localized around the proacrosomal vesicle and nucleus membrane in early-stage spermatid. In the following middle stage, Prohibitin mRNA was situated inside the invaginated region of half-moon-like nucleus and surrounded the proacrosomal vesicle. In late-stage spermatid, the mRNA was aggregated in the acrosomal tubule, the band between the acrosome and cup-like nucleus, remanent cytoplasm as well. In the mature sperm, mRNA was only found in the acrosomal tubule and the limited space between the nucleus and acrosome. Therefore, we presume that Prohibitin may fulfill critical functions in the spermiogenesis of Eriocheir sinensis.  相似文献   

8.
锯缘青蟹精子发生的超微结构   总被引:13,自引:0,他引:13  
王艺磊  张子平 《动物学报》1997,43(3):249-254
采用透射电镜观察锯缘青蟹精子发生过程中超微结构的变化,结果表明:精原细胞椭圆形,染色质分布于核膜周围,胞质中具嵴少的线粒体,内质网小泡等。初级精母细胞染色质呈非浓缩状,胞质中具众 内质网小泡,特殊的膜系及晶格状结构。次级精母细胞核质间出现由内质小泡聚集成的腔。  相似文献   

9.
Spermatogenic ultrastructure in the marine bivalve mollusc Myochama anomioides (Myochamidae) is described and contrasted with other bivalves, especially other euheterodonts. Small (0.1 μm diameter), primary proacrosomal vesicles produced in spermatocytes give rise to much larger (0.4 μm diameter) secondary proacrosomal vesicles in early spermatids, which in turn form the dished‐shaped, definitive acrosomal vesicle (diameter 1.0 μm) of later spermatids. The acrosomal vesicle acquires a deposit of subacrosomal material and comes to lie close to or in contact with the plasma membrane. The acrosomal complex (acrosomal vesicle + subacrosomal material) initially positions itself at the apex of the condensing, fibrous nucleus (the so‐called temporary acrosome position), but subsequently begins to move posteriorly. The condensing nucleus becomes markedly folded so that its apex is posteriorly orientated towards the migrating acrosomal complex and the midpiece (mitochondria and centrioles). The close spatial relationship of nuclear apex to acrosomal complex during this folding strongly suggests that acrosomal migration in M. anomioides is assisted, at least in part, by movement of the late spermatid nucleus. Similar nuclear folding has previously been demonstrated in an early stage of fertilization in another anomalodesmatan (Laternula limicola) raising the possibility that one event might be a reversal of the other.  相似文献   

10.
Spermiogenesis, in particular the head differentiation of Diplometopon zarudnyi, was studied at the ultrastructural level by Transmission Electron Microscope (TEM). The process includes acrosomal vesicle development, nuclear elongation, chromatin condensation and exclusion of excess cytoplasm. In stage I, the proacrosomal vesicle occurs next to a shallow fossa of the nucleus, and a dense acrosomal granule forms beneath it. This step commences with an acrosome vesicle forming from Golgi transport vesicles; simultaneously, the nucleus begins to move eccentrically. In stage II, the round proacrosomal vesicle is flattened by projection of the nuclear fossa, and the dense acrosomal granule diffuses into the vesicle as the fibrous layer forms the subacrosomal cone. Circular manchettes surrounded by mitochondria develop around the nucleus, and the chromatin coagulates into small granules. The movement of the nucleus causes rearrangement of the cytoplasm. The nucleus has uniform diffuse chromatin with small indices of heterochromatin. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. In stage III, the front of the elongating nucleus protrudes out of the spermatid and is covered by the flat acrosome; coarse granules replace the small ones within the nucleus. One endonuclear canal is present where the perforatorium resides. In stage IV, the chromatin concentrates to dense homogeneous phase. The circular manchette is reorganized longitudinally. The Sertoli process covers the acrosome and the residues of the cytoplasmic lobes are removed. In stage V, the sperm head matures.  相似文献   

11.
The ultrastructural features of spermatogenesis were investigated in the hermaphroditic sea star Asterina minor. The primordial germ cells in the genital rachis contain small clusters of electron-dense material (nuage material) and a stack of annulate lamellae. They also have a flagellum and basal body complex situated close to the Golgi complex. After the development of the genital rachis into the ovotestis, spermatogenic cells increase in number and differentiation begins. Nuage material is observed in spermatogonia, but it gradually disappears in spermatocytes. The annulate lamellae do not exist beyond the early spermatogonial stage. By contrast, a flagellum and basal body complex are found throughout spermatogenesis. The Golgi-derived proacrosomal vesicles appear in the spermatocyte and coalesce to form an acrosomal vesicle in the early spermatid. The process of acrosome formation is as follows: (1) a lamella of endoplasmic reticulum (ER) continuous with the outer nuclear membrane encloses the posterior portion of the acrosomal vesicle; (2) the vesicle attaches to the cell membrane with its anterior portion; (3) periacrosomal material accumulates in the space between the acrosomal vesicle and the ER; (4) the nucleus proper changes its features to surround the acrosome; (5) amorphous, electron-dense material is deposited under the electron-dense disk; and (6) the nucleus forms a hollow opposite the electron-dense material.  相似文献   

12.
The spermiogenesis consisting of five spermatid stages and the early spermatozoon has been investigated in Armorloricus elegans (Loricifera) with the use of transmission electron microscopy. The male reproductive system consists of three parts; testes, vasa deferentia and seminal vesicles. Caudally, the two seminal vesicles merge together in a ciliated duct and the excretory/gonadal—and digestive systems continue through the recto-urogenital canal, which opens via the lateral gonopores and the temporarily closed anal system. Spermiogenesis mainly occurs in the testes, whereas further maturation of the late spermatids and early spermatozoa occurs in the vasa deferentia and seminal vesicles. A maturation gradient (from spermatocytes to spermatozoa) is found from the posterior peripheral part of the testes to the anterior periphery and then centrally. During spermiogenesis the round nucleus becomes more osmiophilic and condensation of chromatin occurs. Later the nucleus elongates until it becomes rod-shaped in the early spermatozoa. In the second spermatid stage, a large vesicle is formed by saccules developed from the Golgi complex. This vesicle develops further and consists of three different osmiophilic parts with some crystal-like structures inside and is on the outside almost entirely surrounded by thick striated filaments. In the mid-piece the flagellum has a typical 9 × 2 + 2 axoneme and the two mitochondria are fused into a single sheet surrounding the flagellum. In the early spermatozoon stage an acrosomal-like cap structure with an acrosome filament appears proximal to the protruded rod-shaped nucleus. This cap is not formed by the Golgi complex and therefore might not be a true acrosome. Comparing the early spermatozoa of A. elegans with other cycloneuralians has shown some similarities with especially Kinorhyncha and Priapulida. These similarities are thought to be plesiomorphic.  相似文献   

13.
Summary

In Cerastoderma glaucum, Sertoli cells are rich in lipids, glycogen and lysosomes, and premeiotic cells exhibited nuage, a prominent Golgi complex and endoplasmic reticulum cisternae encircling the nucleus. The Golgi complex gives rise to proacrosomal vesicles during mid-spermiogenesis, and the round acrosomal vesicle, with a dense fibrillar core, migrates laterally while linked to the plasma membrane as it develops the subacrosomal material. In its final position, the vesicle becomes cap-shaped (0.6 μm) and differentiates into apical light and basal dense regions. The elongated and helicoidal nucleus (8–9.9 μm) has a thin tip (0.3 μm) that invades the subacrosomal space, and in the midpiece (0.8 μm) two of the four mitochondria extend laterally to the nucleus (1.5–2.1 μm). In Spisula subtruncata, Sertoli cells are rich in lipids, glycogen and phagocytosed sperm. Premeiotic cells exhibit nuage, a prominent Golgi complex that gives rise to proacrosomal vesicles from the leptotene stage and a flagellimi that is extruded at zygotene. The acrosomal vesicle forms during the round spermatid stage and differentiates into a large and dense basal region and an apical light region. It then migrates while linked to the plasma membrane by its apical pole. Development of the subacrosomal perforatorium is associated with nuage materials and endoplasmic reticulum vesicles. The mature cap-shaped (0.6 μm) acrosomal vesicle exhibits a large apical and irregular region with floccular contents and a basal dense region. The round nucleus becomes barrel-shaped (1.5 μm) and the midpiece (0.8 μm), with four mitochondria, contains a few glycogen particles.  相似文献   

14.
15.
Spermatogenesis is a complicated process during which spermatogonia undergo proliferation and divisions leading, after a series of dramatic changes, to the production of mature spermatozoa. Many molecular motors are involved in this process. KIFC1, a C-terminal kinesin motor, participates in acrosome biogenesis and nuclear shaping. We report here the expression profile of KIFC1 during spermatogenesis in the Chinese mitten crab, Eriocheir sinensis. KIFC1 mainly localizes around the nucleus but is also present within the nucleus of the spermatogonium and spermatocyte. At the early spermatid stage, KIFC1 begins to be distributed on the nuclear membrane at the region where the proacrosomal vesicle is located. By the late spermatid stage, KIFC1 is found on the acrosome. Immunocytochemical and ultrastructural analyses have shown that KIFC1 localizes on the perforatorium, which is composed of an apical cap and an acrosomal tubule. We demonstrate that, during spermatogenesis in E. sinensis, KIFC1 probably plays important roles in the biogenesis of the acrosome and in its maintenance. KIFC1 may also be essential for the eversion of the acrosome during fertilization. This work was supported in part by the following projects: the National Natural Science Foundation of China (nos. 30671606 and 40776079) and the National Basic Research Program of China (973 Program; grant no. 2007CB948104).  相似文献   

16.
Summary Acrosome morphogenesis commences in the juxtanuclear cytoplasm at the posterior end of spermatids of Lumbricus terrestris. A dense rod-shaped structure and the Golgi apparatus together participate first in forming an acrosome vesicle that contains the acrosome granule, and somewhat later shape the conical base of the acrosome in the cytoplasm beneath the vesicle. Cytoplasmic flow may account for the migration of the immature acrosome to the apical surface of the nucleus of the spermatid. Manchette microtubules play a key role in the final modelling of the acrosome. Sheathed by the manchette the acrosome elongates to 3–4 times its pre-attachment length. The conical base of the acrosome then extends anteriorly to enclose the acrosome vesicle. A dense rod emerging from the rod-shaped granule occupies an indentation of the base of the acrosome vesicle. The mature acrosome of Lumbricus is an extremely complex structure about 5–7 microns long and is bounded by the plasmalemma of the spermatozoon.This study was supported by a research training grant GM-00582-07 from the Public Health Service.  相似文献   

17.
Summary Developing spermatids and mature spermatozoa from the isopod, Oniscus asellus and the amphipod, Orchestoidea sp. have been examined with the light microscope and the electron microscope and have been found to have similar morphologies. As spermiogenesis proceeds the nucleus migrates to one pole of the spermatid at which point an acrosome, contiguous rod, and cross-striated tail develop. The acrosomal vesicle elongates to a cone-shaped, mature acrosome lying at the apex of a cross-striated tail and nucleus which are situated at approximate forty-five degrees to each other. The cross-striated tail originates as an evagination of the spermatid plasma membrane near the acrosomal vesicle. The tail eventually grows to lengths of four to five hundred microns. The mature, tail-like appendage is cross-striated at major 750 to 800 Å, and minor 125 to 150 Å, periodicities. When observed in vitro, mature sperm of both species appear non-motile.Possible homologies of this unusual spermatozoon with other types of spermatozoa are made and it is concluded that: 1) isopod and amphipod spermatozoa should be classified as non-flagellate; 2) the cross-striated tail, previously thought to be a flagellum, is a non-motile structure associated in development and possible function with the acrosome; and 3) the rodlike structure contiguous with the acrosome is similar to perforatoria described in some vertebrate sperm.Supported by U.S.P.H.S. Grant No. NB-06285 and Training Grant No. 5-Tl-GM-202. — The author wishes to express his grateful appreciation for the technical assistance given by Miss Ann Barnett during the course of this investigation.  相似文献   

18.
In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves. Received: 29 September 1998 / Received in revised form: 20 May 1999 / Accepted: 14 June 1999  相似文献   

19.
Acrosome biogenesis involves the transport and fusion of Golgi-derived proacrosomal vesicles along the acroplaxome, an F-actin/keratin 5-containing cytoskeletal plate anchored to the spermatid nucleus. A significant issue is whether the acroplaxome develops in acrosomeless mutant mice. Male mice with a Hrb null mutation are infertile and both spermatids and sperm are round-headed and lack an acrosome. Hrb, a protein that contains several NPF motifs (Asn-Pro-Phe) and interacts with proteins with Eps15 homology domains, is regarded as critical for the docking and/or fusion of Golgi-derived proacrosomal vesicles. Here we report that the lack of an acrosome in Hrb mutant spermatids does not prevent the development of the acroplaxome. Yet the acroplaxome in the mutant contains F-actin but is deficient in keratin 5. We also show that the actin-based motor protein myosin Va and its receptor, Rab27a/b, known to be involved in vesicle transport, are present in the Golgi and Golgi-derived proacrosomal vesicles in wild-type and Hrb mutant mouse spermatids. In the Hrb mutant, myosin-Va-bound proacrosome vesicles tether to the acroplaxome, where they flatten and form a flat sac, designated pseudoacrosome. As spermiogenesis advances, round-shaped spermatid nuclei of the mutant display several nuclear protrusions, designated nucleopodes. Nucleopodes are consistently found at the acroplaxome- pseudoacrosome site. Our findings support the interpretation that the acroplaxome provides a focal point for myosin-Va/ Rab27a/b-driven proacrosomal vesicles to accumulate, coalesce, and form an acrosome in wild-type spermatids and a pseudoacrosome in Hrb mutant spermatids. We suggest that nucleopodes develop at a site where a keratin 5-deficient acroplaxome may not withstand tension forces operating during spermatid nuclear shaping.  相似文献   

20.
Regulated exocytosis is controlled by internal and external signals. The molecular machinery controlling the sorting from the newly synthesized vesicles from the Golgi apparatus to the plasma membrane play a key role in the regulation of both the number and spatial location of the vesicles. In this context the mammalian acrosome is a unique vesicle since it is the only secretory vesicle attached to the nucleus. In this work we have studied the membrane trafficking between the Golgi apparatus and the acrosome during mammalian spermiogenesis. During bovine spermiogenesis, Golgi antigens (mannosidase II) were detected in the acrosome until the late cap-phase spermatids, but are not found in testicular spermatozoa (maturation-phase spermatids). This suggests that Golgiacrosome flow may be relatively unselective, with Golgi residents retrieved before spermination is complete. Surprisingly, rab7, a protein involved in lysosome/endosome trafficking was also found associated with the acrosomal vesicle during mouse spermiogenesis. Our results suggest that the acrosome biogenesis is associated with membrane flow from both the Golgi apparatus and the endosome/lysosome system in mammalian spermatids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号