首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver xanthine dehydrogenase, type D, has been isolated directly from crude extracts as an antibody complex and its properties compared with those of two oxidase forms of the enzyme, heat-treated type O and trypsin-treated type O, also isolated as antibody complexes. The type D antibody complex displays electron acceptor specificities and electron paramagnetic resonance properties characteristic of an NAD+-dependent dehydrogenase whereas the trypsin-treated type O complex behaves as an O2-utilizing oxidase. The heat-treated type O complex displays intermediate behavior. After electrophoresis in dodecyl sulfate-urea-acrylamide gels, type D and heated type O enzymes show single polypeptide bands, each of approximately 150,000 molecular weight. The trypsinized type O also shows one major band but with an approximate molecular weight of 130,000. Purified type D enzyme, when proteolytically treated, is converted to an oxidase with increased mobility on polyacrylamide gels. The 150,000 molecular weight subunit is cleaved into smaller subunits during proteolysis. Treatment with 5,5′-dithiobis-(2-nitrobenzoic acid) converts the type D enzyme, whether isolated as the purified enzyme or as the immune precipitate, to type O enzyme in a time-dependent manner. Titration of type D and the two type O antibody complexes with 5,5′-dithiobis-(2-nitrobenzoic acid) reveals that type D and heated type O each has approximately 28 reactive sulfhydryls, whereas the trypsinized type O has only 8 such groups. Many of the free sulfhydryls are vicinal and form disulfide bonds during the conversion to an oxidase by this reagent. Unproteolyzed preparations of type O rat liver enzyme and milk xanthine oxidase are converted to type D enzymes by treatment with dithiothreitol. The converted enzymes display electron acceptor specificities and epr properties characteristic of an NAD+-dependent dehydrogenase molecule.  相似文献   

2.
1. The xanthine oxidase of cow's milk, crude or purified, appears as an oxidase (type O), and can be converted almost completely into a NAD(+)-dependent dehydrogenase (type D) by treatment with dithioerythritol or dihydrolipoic acid, but only to a small extent by other thiols. 2. The D form of the enzyme is inhibited by NADH, which competes with NAD(+). 3. The kinetic constants of the two forms of the enzyme are similar to those of the corresponding forms of rat liver xanthine oxidase. 4. Milk xanthine oxidase is converted into an irreversible O form by pretreatment with chymotrypsin, papain or subtilisin, but only partially with trypsin. 5. The enzyme as purified shows a major faster band and a minor slower band on gel electrophoresis. The slower band is greatly reinforced after xanthine oxidase is converted into the irreversible O form by chymotrypsin.  相似文献   

3.
Xanthine oxidase may be isolated from various mammalian tissues as one of two interconvertible forms, viz., a dehydrogenase (NAD+ dependent, form D) or an oxidase (O2 utilizing, form O). A crude preparation of rat liver xanthine dehydrogenase (form D) was treated with an immobilized preparation of crude bovine sulfhydryl oxidase. Comparison of the rates of conversion of xanthine dehydrogenase to the O form in the presence and absence of the immobilized enzyme indicated that sulfhydryl oxidase catalyzes such conversion. These results were substantiated in a more definitive study in which purified bovine milk xanthine oxidase, which had been converted to the D form by treatment with dithiothreitol, was incubated with purified bovine milk sulfhydryl oxidase. Comparison of measured rates of conversion (in the presence and absence of active sulfhydryl oxidase and in the presence of thermally denatured sulfhydryl oxidase) revealed that sulfhydryl oxidase enzymatically catalyzes the conversion of type D activity to type O activity in xanthine oxidase with the concomitant disappearance of its sulfhydryl groups. It is possible that the presence or absence of sulfhydryl oxidase in a given tissue may be an important factor in determining the form of xanthine-oxidizing activity found in that tissue.  相似文献   

4.
1. The ;xanthine oxidase' activity of rat liver supernatant, most of which behaves as an NAD(+)-dependent dehydrogenase (type D) can be rapidly converted into an oxidase (type O) by thiol reagents such as tetraethylthiuram disulphide, copper sulphate, 5,5'-dithiobis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercuribenzoate. Treatment with copper sulphate, if prolonged, leads to almost complete inactivation of the enzyme. The effect of these reagents is prevented by dithioerythritol, and in all cases but that of N-ethylmaleimide is reversed by the same thiol. 2. Dithioerythritol prevents and reverses the conversion of xanthine oxidase from type D into type O brought about by storage of rat liver supernatant at -20 degrees C, preincubation under anaerobic conditions, treatment with carbon or with diethyl ether, and reverses, but does not prevent, the conversion obtained by preincubation of the whole liver homogenate. 3. Conversion of the enzyme from type D into type O is effected by preincubation of rat liver supernatant with the sedimentable fraction from rat liver but not from chick or pigeon liver. The xanthine dehydrogenase activity of chick liver supernatant is not changed into an oxidase by preincubation with the sedimentable fraction from rat liver. 4. The enzyme activity of rat liver supernatant is converted from type D into type O during purification of the enzyme: the purified enzyme can be reconverted into type D by dithioerythritol. 5. The enzyme appears as an oxidase in the supernatant of rat heart, intestine, spleen, pancreas, lung and kidney. The enzyme of all organs but intestine can be converted into a dehydrogenase by dithioerythritol.  相似文献   

5.
1. Rat liver xanthine oxidase type D (NAD(+)-dependent) and chick liver xanthine oxidase are inhibited by NADH, which competes with NAD(+). 2. The addition of a NADH-reoxidizing system in the assay of these enzyme activities is proposed. 3. Rat liver xanthine oxidase type O (oxygen-dependent) is not affected by NADH.  相似文献   

6.
To characterise the NADH oxidase activity of both xanthine dehydrogenase (XD) and xanthine oxidase (XO) forms of rat liver xanthine oxidoreductase (XOR) and to evaluate the potential role of this mammalian enzyme as an O2 •− source, kinetics and electron paramagnetic resonance (EPR) spectroscopic studies were performed. A steady-state kinetics study of XD showed that it catalyses NADH oxidation, leading to the formation of one O2 •− molecule and half a H2O2 molecule per NADH molecule, at rates 3 times those observed for XO (29.2 ± 1.6 and 9.38 ± 0.31 min−1, respectively). EPR spectra of NADH-reduced XD and XO were qualitatively similar, but they were quantitatively quite different. While NADH efficiently reduced XD, only a great excess of NADH reduced XO. In agreement with reductive titration data, the XD specificity constant for NADH (8.73 ± 1.36 μM−1 min−1) was found to be higher than that of the XO specificity constant (1.07 ± 0.09 μM−1 min−1). It was confirmed that, for the reducing substrate xanthine, rat liver XD is also a better O2 •− source than XO. These data show that the dehydrogenase form of liver XOR is, thus, intrinsically more efficient at generating O2 •− than the oxidase form, independently of the reducing substrate. Most importantly, for comparative purposes, human liver XO activity towards NADH oxidation was also studied, and the kinetics parameters obtained were found to be very similar to those of the XO form of rat liver XOR, foreseeing potential applications of rat liver XOR as a model of the human liver enzyme.  相似文献   

7.
A new HPLC method was set up for the simultaneous evaluation of the amount of uric acid and NADH produced by incubation of tissue fractions containing xanthine oxidase, from which the activity of both type "O" (oxidase) and type "D" (dehydrogenase) xanthine oxidase can be calculated. After incubation of the enzyme fraction and ethanol extraction, HPLC analysis is directly carried out. Sensitivity of the method is high enough for the evaluation of xanthine oxidase activity at the lowest reported tissue values. The reliability of the method was tested measuring the enzyme activity in rat heart and kidney extracts.  相似文献   

8.
Retinal oxidase (retinoic acid synthase) (EC 1.2.3.11) was purified electrophoretically, as a single protein band, from rabbit liver cytosol. The characteristic properties, enzymatic reaction mechanism, substrate specificity and kinetic parameters for retinals and molecular oxygen of the retinal oxidase were investigated. The Km values for all-trans-retinal of the retinal of the retinal oxidase was the lowest than those for the other retinal derivatives. The retinal oxidase is a metalloflavoenzyme containing 2 FADs as the coenzyme, and 8 irons, 2 molybdenums,2 disulfide bonds and 8 inorganic sulfurs. Its relative molecular mass was determined to be 270 kDa by gel filtration HPLC on a TSKgel G3000swXL column. Its minimum molecular mass was estimated to be 135 kDa by SDS-PAGE. The optical spectrum of the retinal oxidase showed absorption peaks at 275, 340 and 450 nm, and shoulders at 420 and 473 nm, in the oxidized form. The molecular extinction coefficients of the oxidase at selected wavelengths were determined. Circular dichroism spectra of the retinal oxidase were measured in the ultraviolet and visible regions. These spectra showed positive absorption in the visible region. The amino-acid composition was determined. The activity of the oxidase was not affected by any cofactors, such as NADP+, NAD+, NADPH and NADH, and it did not occur under anaerobic conditions. The oxidase was not inhibited by BOF-4272, a potent inhibitor of xanthine dehydrogenase, or rat anti-xanthine dehydrogenase IgG. Experiments on retinoic acid formation under 18O2 or H218O demonstrated that the oxygen of waer was incorporated into retinoic acid by the retinal oxidase, but not molecular oxygen.  相似文献   

9.
《Free radical research》2013,47(5):289-295
In the hypoxic liver an increased rate of cytosolic and peroxisomal H2O2 generation is due to the accelerated purine nucleotide degradation. The relative contribution of the oxidase type of xanthine oxidoreductase activity increases in hypoxia by less than 10%, the dehydrogenase type of this enzyme is hardly inhibited by the increased concentration of free NADH. Nevertheless, due to the high hypoxanthine supply the xanthine oxidase related H2O2 formation is increased six-fold and together with the peroxisomal uricase-mediated share it accounts for half of the oxygen consumption.  相似文献   

10.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of O*- and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating O*- and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

11.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

12.
Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a key enzyme in purine degradation where it oxidizes hypoxanthine to xanthine and xanthine to uric acid. Electrons released from these substrates are either transferred to NAD+ or to molecular oxygen, thereby yielding NADH or superoxide, respectively. By an alternative activity, AtXDH1 is capable of oxidizing NADH with concomitant formation of NAD+ and superoxide. Here we demonstrate that in comparison to the specific activity with xanthine as substrate, the specific activity of recombinant AtXDH1 with NADH as substrate is about 15-times higher accompanied by a doubling in superoxide production. The observation that NAD+ inhibits NADH oxidase activity of AtXDH1 while NADH suppresses NAD+-dependent xanthine oxidation indicates that both NAD+ and NADH compete for the same binding-site and that both sub-activities are not expressed at the same time. Rather, each sub-activity is determined by specific conditions such as the availability of substrates and co-substrates, which allows regulation of superoxide production by AtXDH1. Since AtXDH1 exhibits the most pronounced NADH oxidase activity among all xanthine dehydrogenase proteins studied thus far, our results imply that in particular by its NADH oxidase activity AtXDH1 is an efficient producer of superoxide also in vivo.  相似文献   

13.
Summary An NADH dehydrogenase activity is induced together with xanthine dehydrogenase I in Aspergillus nidulans wild type strains. The two activities have the same mobility in polyacrylamide gels (Fig.1) and are immunologically indistinguishable (Fig.2). Several hxB mutants which lack xanthine dehydrogenase activity but conserve the associated NADH dehydrogenase activity were used to determine that uric acid, but not hypoxanthine, is an inducer of the enzyme (Figs. 3 and 4). This fact together with results reported previously (Scazzocchio and Darlington, 1968) indicate that the induction of xanthine dehydrogenase I and urate oxidase requires the product specified by the uaY gene, as well as the common effector, urie acid.Paper I of this series is Scazzocchio, Holl and Foguelman (1973).  相似文献   

14.
The course of the reaction sequence hypoxanthine leads to xanthine leads to uric acid, catalysed by the NAD+-dependent activity of xanthine oxidoreductase, was investigated under conditions either of immediate oxidation of the NADH formed or of NADH accumulation. The enzymic preparation was obtained from rat liver, and purified 75-fold (as compared with the 25000 g supernatant) on a 5'-AMP-Sepharose 4B column; in this preparation the NAD+-dependent activity accounted for 100% of total xanthine oxidoreductase activity. A spectrophotometric method was developed for continuous measurements of changes in the concentrations of the three purines involved. The time course as well as the effects of the concentrations of enzyme and of hypoxanthine were examined. NADH produced by the enzyme lowered its activity by 50%, resulting in xanthine accumulation and in decreases of uric acid formation and of hypoxanthine utilization. The inhibition of the Xanthine oxidoreductase NAD+-dependent activity by NADH is discussed as a possible factor in the regulation of IMP biosynthesis by the 'de novo' pathway or (from unchanged hypoxanthine) by ther salvage pathway.  相似文献   

15.
The involvement of xanthine oxidase (XO) in some reactive oxygen species (ROS) -mediated diseases has been proposed as a result of the generation of and H2O2 during hypoxanthine and xanthine oxidation. In this study, it was shown that purified rat liver XO and xanthine dehydrogenase (XD) catalyse the NADH oxidation, generating and inducing the peroxidation of liposomes, in a NADH and enzyme concentration-dependent manner. Comparatively to equimolar concentrations of xanthine, a higher peroxidation extent is observed in the presence of NADH. In addition, the peroxidation extent induced by XD is higher than that observed with XO. The in vivo-predominant dehydrogenase is, therefore, intrinsically efficient at generating ROS, without requiring the conversion to XO. Our results suggest that, in those pathological conditions where an increase on NADH concentration occurs, the NADH oxidation catalysed by XD may constitute an important pathway for ROS-mediated tissue injuries.  相似文献   

16.
Xanthine dehydrogenase (EC 1.2.1.37), an essential enzyme for ureide metabolism was purified from the cytosol fraction of soybean nodules. The purified xanthine dehydrogenase was shown to be homogeneous by electrophoresis and a pI of 4.7 was determined by isoelectric focusing. The enzyme had a molecular weight of 285,000 and two subunits of molecular weight 141,000 each. The holoenzyme contained 1.7 (±0.7) mol Mo and 8.1 (±2.0) mol Fe/mol enzyme and the enzyme also contained FMN and is thus a molybdoironflavoprotein. Soybean xanthine dehydrogenase is the second enzyme in plants demonstrated to contain Mo and the first xanthine-oxidizing enzyme reported to contain FMN, rather than FAD as the flavin cofactor.  相似文献   

17.
Our previous report showed the existence of microaerophilic Bifidobacterium species that can grow well under aerobic conditions rather than anoxic conditions in a liquid shaking culture. The difference in the aerobic growth properties between the O2-sensitive and microaerophilic species is due to the existence of a system to produce H2O2 in the growth medium. In this study, we purified and characterized the NADH oxidase that is considered to be a key enzyme in the production of H2O2. Bifidobacterium bifidum, an O2-sensitive bacterium and the type species of the genus Bifidobacterium, possessed one dominant active fraction of NADH oxidase and a minor active fraction of NAD(P)H oxidase activity detected in the first step of column chromatography for purification of the enzyme. The dominant active fraction was further purified and determined from its N-terminal sequence to be a homologue of b-type dihydroorotate dehydrogenase (DHOD), composed of PyrK (31 kDa) and PyrDb (34 kDa) subunits. The genes that encode PyrK and PryDb are tandemly located within an operon structure. The purified enzyme was found to be a heterotetramer showing the typical spectrum of a flavoprotein, and flavin mononucleotide and flavin adenine dinucleotide were identified as cofactors. The purified enzyme was characterized as the enzyme that catalyzes the DHOD reaction and also catalyzes a H2O2-forming NADH oxidase reaction in the presence of O2. The kinetic parameters suggested that the enzyme could be involved in H2O2 production in highly aerated environments.  相似文献   

18.
A spectrophotometric method for the determination of three forms of xanthine oxidoreductase, namely dehydrogenase (D), dehydrogenase-oxidase (D/O) and oxidase (O), is described. Enzymic fractions obtained from rat liver were found to contain either all three forms, or (under special conditions of preparation) only two forms, D and D/O. The conversion of form D leads to form D/O leads to form O in the presence of Cu2+ ions was shown. Form D/O acted with NAD+ as well as with O2 as electron acceptors, it exhibited greater affinity to NAD+ than to O2, and NAD+ abolished the oxidase activity of this form. Moreover, oxidase activity of form D/O was inhibited by NADH. These facts indicate that NAD+ and O2 compete for the same active site on the enzyme molecule.  相似文献   

19.
Reductive titrations of a NAD-dependent type (type-D) and an O2-dependent type (type-O) of rat liver xanthine dehydrogenase showed that only the type-D enzyme formed a pronounced stable FAD semiquinone (FADH*). The FAD semiquinone was less stabilized in the presence of NAD. The Vmax value for xanthine-NAD activity of type-D enzyme was close to that for xanthine-O2 activity of type-O enzyme, while the Vmax value for xanthine-O2 activity of type-D enzyme was about one-fourth of that of type-O enzyme. The Km value for O2 of type-D enzyme was about five times as large as that of type-O enzyme. The absorbance spectrum of type-D enzyme during turnover with xanthine and O2 as substrates showed a considerable amount of FADH* formation, but that with xanthine and NAD as substrates showed only a negligible one. Low xanthine-O2 activity of type-D enzyme, as compared with that of type-O enzyme, seems to be explained by the conformational change occurring in conversion from type-O to type-D enzyme, which results in different reactivity of FAD to molecular oxygen and a higher fraction of FADH* during turnover. The binding of NAD may possibly increase the fraction of FADH2, resulting in a Vmax value of xanthine-NAD activity almost as high as that of xanthine-O2 activity of type-O enzyme.  相似文献   

20.
  • 1.1. A NAD+-dependent glutamate dehydrogenase (EC 1.4.1.2.) was purified 126-fold from Halobacterium halobium.
  • 2.2. Activity and stability of the enzyme were affected by salt concentration. Maximum activity of the NADH-dependent reductive amination of 2-oxoglutarate occurs at 3.2 M NaCl and 0.8 M KCl, and the NAD+-dependent oxidative deamination of l-glutamate occurs at 0.9 M NaCl and 0.4 M KCl. The maximum activity is higher with Na+ than with K+ in the amination reaction while the reverse is true in the deamination reaction.
  • 3.3. The apparent Km values of the various substrates and coenzymes under optimal conditions were: 2-oxoglutarate, 20.2 mM; ammonium, 0.45 M; NADH, 0.07 mM; l-glutamate, 4.0 mM; NAD+, 0.30 mM.
  • 4.4. No effect of ADP or GTP on the enzyme activity was found. The purified enzyme was activated by some l-amino acids.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号