首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD44与肿瘤转移   总被引:12,自引:0,他引:12  
郭立霞  谢弘 《生命科学》2001,13(2):60-63
透明质酸受体CD44是一类重要的粘附分子,与肿瘤转移密切相关,。早期认为CD44可促进肿瘤细胞的转移,但近来发现CD44与肿瘤志移之间的关系十分复杂,与CD44的分子类型及肿瘤组织类型皆有关。因此,尚需深入了解CD44在肿瘤转移过程中的分子机制,目前的研究发现CD44可能影响了肿瘤细胞的粘附,运动和胞外基质的降解等过程,临床上CD44有可能成为新的诊断指标和治疗靶点。  相似文献   

2.
CD44 is the principle transmembrane receptor for the extracellular matrix glycosaminoglycan, hyaluronan. This receptor: ligand interaction is required for many normal cellular processes including lymphocyte homing into inflammatory sites, assembly of a pericellular matrix during chondrogenesis, wound healing and tissue morphogenesis during development. In order to mediate these diverse events, CD44 expressing cells must be able to regulate, and respond to, interactions with hyaluronan. The mechanisms responsible have been subject to scrutiny over the past few years as it has become clear that their disruption can underlie the progression of both metastatic tumours and chronic inflammatory diseases. Here we describe recent data identifying discrete regions within the transmembrane and cytoplasmic domains of CD44 which regulate this important adhesion receptor.  相似文献   

3.
Chronic intense UV radiation is the main cause of epidermal tumors. Because hyaluronan (HA), a large extracellular polysaccharide, is known to promote malignant growth, hyaluronan expression was studied in a model in which long-term UV radiation (UVR) induces epidermal tumors. Mouse back skin was exposed three times a week for 10.5 months to UVR corresponding to one minimal erythema dose, processed for histology, and stained for hyaluronan and the hyaluronan receptor CD44. This exposure protocol caused epidermal hyperplasia in most of the animals; tumors, mainly squamous cell carcinomas (SCCs), were found in ~20% of the animals. Specimens exposed to UVR showed increased hyaluronan and CD44 staining throughout the epidermal tissue. In hyperplastic areas, hyaluronan and CD44 stainings correlated positively with the degree of hyperplasia. Well-differentiated SCCs showed increased hyaluronan and CD44 staining intensities, whereas poorly differentiated tumors and dysplastic epidermis showed areas where HA and CD44 were locally reduced. The findings indicate that HA and CD44 increase in epidermal keratinocytes in the premalignant hyperplasia induced by UV irradiation and stay elevated in dysplasia and SCC, suggesting that the accumulation of hyaluronan and CD44 is an early marker for malignant transformation and may be a prerequisite for tumor formation.  相似文献   

4.
Internalization of the Hyaluronan Receptor CD44 by Chondrocytes   总被引:1,自引:0,他引:1  
Chondrocytes express CD44 as a primary receptor for the matrix macromolecule hyaluronan. Hyaluronan is responsible for the retention and organization of proteoglycan within cartilage, and hyaluronan-chondrocyte interactions are important for the assembly and maintenance of the cartilage matrix. Bovine articular chondrocytes were used to study the endocytosis and turnover of CD44 and the effects of receptor occupancy on this turnover. Matrix-intact chondrocytes exhibit approximately a 6% internalization of cell surface CD44 by 4 h. Treatment with Streptomyces hyaluronidase to remove endogenous pericellular matrix increased internalization to approximately 20% of cell surface CD44 at 4 h. This turnover could be partially inhibited by the addition of exogenous hyaluronan to these matrix-depleted chondrocytes. Cell surface biotin-labeled CD44 was internalized by chondrocytes and this internalization was decreased in the presence of hyaluronan. Colocalization of internalized CD44 and fluorescein-labeled hyaluronan in intracellular vesicles correlates with the previous results of receptor-mediated endocytosis pathway for the degradation of hyaluronan by acid hydrolases. Taken together, our results indicate that CD44 is internalized by chondrocytes and that CD44 turnover is modulated by occupancy with hyaluronan.  相似文献   

5.
Hyaluronan, a high-molecular-weight glycosaminoglycan of the extracellular matrix, is prominent during rapid tissue growth and repair. It stimulates cell motility and hydrates tissue, providing an environment that facilitates cell movement. Markedly enhanced levels of hyaluronan also occur in the stroma surrounding human cancers, thus providing an environment that promotes spread of cancer cells. The ability of malignant tumors to generate lactate, even in the presence of adequate oxygen, is known as the Warburg effect. Early in wound healing as blood and oxygen supply decrease, lactate levels increase, as does stromal hyaluronan, suggesting a cause-and-effect relationship. Similarly, peritumor stromal fibroblast hyaluronan may be a response to cancer cell lactate. To test this, fibroblasts were cultured in the presence of lactate. With increasing lactate, higher levels of hyaluronan were observed, as were levels of CD44 expression, the predominant receptor for hyaluronan. The ability of tumor cells to utilize anaerobic metabolism and to generate lactate, even in the presence of adequate supplies of oxygen, may be one of the mechanisms used to recruit host fibroblasts to deposit hyaluronan and to express CD44, thereby participating in the process of cancer invasion and metastasis.  相似文献   

6.
The tumor microenvironment makes a decisive contribution to the development and dissemination of cancer, for example, through extracellular matrix components such as hyaluronan (HA), and through chemokines that regulate tumor cell behavior and angiogenesis. Here we report a molecular link between HA, its receptor CD44 and the chemokine CXCL12 in the regulation of cell motility and angiogenesis. High-molecular-weight HA (hHA) was found to augment CXCL12-induced CXCR4 signaling in both HepG2iso cells and primary human umbilical vein endothelial cells, as evidenced by enhanced ERK phosphorylation and increased cell motility. The augmentation of CXCR4 signaling translated into increased vessel sprouting and angiogenesis in a variety of assays. Small HA oligosaccharides (sHA) efficiently inhibited these effects. Both siRNA-mediated reduction of CD44 expression and antibodies that block the interaction of CD44 with HA provided evidence that CXCL12-induced CXCR4 signaling depends on the binding of hHA to CD44. Consistently, CD44 and CXCR4 were found to physically interact in the presence of CXCL12, an interaction that could be inhibited by sHA. These findings provide novel insights into how microenvironmental components interact with cell surface receptors in multi-component complexes to regulate key aspects of tumor growth and progression.  相似文献   

7.
We have isolated and characterized an antigen from normal human brain called p80, so called because it migrated with an Mr of 80 kDa on SDS PAGE. The Mr of 80 kDa consists of a protein of about 55-60 kDa and carbohydrate (20-25 kDa). The carbohydrate is almost entirely of the N-linked type, although a small amount of O-linked carbohydrate was detected. Cross-reactivity with monoclonal antibodies A3D8 and A1G3 showed that p80 could therefore be considered an isoform of the CD44 adhesion molecules. In addition, specific binding to hyaluronate which was not competed for by proteoglycan demonstrated that it involved different sites than the proteoglycan binding sites. We also observed that fucoidan and dextran sulphate increased the binding by 200-250% while chondroitin sulphate C also increased the binding but to a lesser extent. Heparin, heparan sulphate and chondroitin sulphates A and B did not have such an effect. The binding of p80 to hyaluronate was pH dependent with a maximum at pH 6.4. We concluded that p80 was an astrocyte specific adhesion molecule.  相似文献   

8.
Bone morphogenetic protein 7 (BMP-7) regulates cellular metabolism in embryonic and adult tissues. Signal transduction occurs through the activation of intracellular Smad proteins. In this paper, using a yeast two-hybrid screen, Smad1 was found to interact with the cytoplasmic domain of CD44, a receptor for the extracellular matrix macromolecule hyaluronan. Coimmunoprecipitation experiments confirmed the interaction of Smad1 with full-length CD44-interactions that did not occur when CD44 receptors truncated within the cytoplasmic domain were tested. Chondrocytes overexpressing a truncated CD44 on a background of endogenous full-length CD44 no longer exhibited Smad1 nuclear translocation upon BMP-7 stimulation. Further, pretreatment of chondrocytes with Streptomyces hyaluronidase to disrupt extracellular hyaluronan-cell interactions inhibited BMP-7-mediated Smad1 phosphorylation, nuclear translocation of Smad1 or Smad4, and SBE4-luciferase reporter activation. These results support a functional link between the BMP signaling cascade and CD44. Thus, changes in hyaluronan-cell interactions may serve as a means to modulate cellular responsiveness to BMP.  相似文献   

9.
In the present study we investigated the functional properties of the three recombinant hyaluronan synthases (HAS proteins) HAS1, HAS2, and HAS3. HAS3-transfected CHO clones exhibited the highest hyaluronan polymerization rate followed by HAS2 transfectants which were more catalytically active than HAS1 transfectants. In living cells all three HAS proteins synthesized hyaluronan chains of high molecular weight (larger than 3.9 x 10(6)). In vitro, the HAS2 isoform produced hyaluronan chains of a molecular weight larger than 3.9 x 10(6), whereas HAS3 produced polydisperse hyaluronan (molecular weight 0.12-1 x 10(6)), and HAS1 synthesized much shorter chains of an average molecular weight of 0.12 x 10(6). Thus, each HAS protein may interact with different cytoplasmic proteins which may influence their catalytic activity. CHO transfectants with the ability to synthesize about 1 microgram hyaluronan/1 x 10 (5) cells/24 h were surrounded by hyaluronan-containing coats, whereas transfectants generating about 4-fold lower amounts of hyaluronan formed coats only in the presence of chondroitin sulfate proteoglycan. An inverse correlation between hyaluronan production on the one hand and cell migration and cell surface CD44 expression on the other was found; a 4-fold lower migration and a 2-fold decrease of cell surface CD44 receptors was seen when hyaluronan production increased 1000-fold over the level in the untransfected cells. The inverse relationships between hyaluronan production and migration and CD44 expression of cells are of importance for the regulation of cell-extracellular matrix interactions.  相似文献   

10.
Embryonic induction, soluble and insoluble factors, receptors, and signal transduction are orchestrated for the morphogenesis of the cartilage elements. The interaction of cells with the extracellular matrix (ECM) may lead to altered cellular response to morphogens based on the formation of new adhesive contacts, or the uncoupling of cell-matrix interactions. Hyaluronan's influence on cell behavior, and its intimate association with cells are accomplished by a wide variety of specific binding proteins for hyaluronan. The temporal expression of the hyaluronan receptor CD44 (which is expressed as several alternatively spliced variants) may be strategic to many of these cell-matrix interactions during chondrogenesis. CD44 expression is temporally coincident with the reduction of intercellular spaces at the regions of future cartilage deposition. The spatial organization of CD44 at the cell surface may function to establish or regulate the structure of the pericellular matrix dependent on a hyaluronan scaffold. As the ECM is modified during embryogenesis, the cellular response to inductive signals may be altered. An uncoupling of chondrocyte-hyaluronan interaction leads to chondrocytic chondrolysis. Thus, consideration of cell-matrix interactions during chondrogenesis, in the light of our current understanding of the temporal and spatial expression of signaling morphogens, should become a promising focus of future research endeavors.  相似文献   

11.
The role of hyaluronan (HA) in periodontal healing has been speculated via its interaction with the CD44 receptor. While HA-CD44 interactions have previously been implicated in numerous cell types; effect and mechanism of exogenous HA on periodontal ligament (PDL) cells is less clear. Herein, we examine the effect of exogenous HA on contractility and migration in human and murine PDL cells using arrays of microposts and time-lapse microscopy. Our findings observed HA-treated human PDL cells as more contractile and less migratory than untreated cells. Moreover, the effect of HA on contractility and focal adhesion area was abrogated when PDL cells were treated with Y27632, an inhibitor of rho-dependent kinase, but not when these cells were treated with ML-7, an inhibitor of myosin light chain kinase. Our results provide insight into the mechanobiology of PDL cells, which may contribute towards the development of therapeutic strategies for periodontal healing and tissue regeneration.  相似文献   

12.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

13.
Recently, splice variants of CD44 have been described that confer metastatic potential to non-metastasizing rat pancreatic carcinoma and sarcoma cell lines. Using antibodies against variant CD44 (CD44v) sequences, we have examined the expression of variant CD44 glycoproteins on human lymphoid cells and tissues and in colorectal neoplasia. Lymphohematopoietic cells express low levels of CD44v glycoproteins. During the process of lymphocyte activation in vitro and in vivo, expression of CD44v glycoproteins is transiently upregulated. The reaction pattern of various antibodies indicates that these CD44 variants contain the domain encoded by exon v6, which is part of the variant that confers metastatic capability. In human colorectal neoplasia we observed overexpression of CD44 splice variants in all invasive carcinomas. Already at early stages of colorectal tumor progression exon v5 epitopes were overexpressed. Tumor progression was strongly related to expression of CD44 isoforms containing exon v6 encoded domains. The findings establish CD44 variants as tumor progression markers in colorectal cancer.  相似文献   

14.
A variant of CD44 containing exon v3 sequences is expressed in the apical ectodermal ridge of the limb bud during embryogenesis. This variant is modified by heparan sulfate moieties and acts as low affinity receptor for FGFs. These FGFs are presented by CD44 to mesenchymal cells which induces their proliferation and limb outgrowth. We suggest that a similar growthfactor presentation mechanism accounts for the function of CD44 variants on metastasizing tumor cells.  相似文献   

15.
Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event stimulates cell motility; however, expression of either CD44H or MT1-MMP alone did not stimulate cell motility. Coexpression of MT1-MMP and mutant CD44H lacking the MT1-MMP-processing site did not result in shedding and did not promote cell migration, suggesting that the processing of CD44H by MT1-MMP is critical in the migratory stimulation. Moreover, expression of the mutant CD44H inhibited the cell migration promoted by CD44H and MT1-MMP in a dominant-negative manner. The pancreatic tumor cell line, MIA PaCa-2, was found to shed the 70-kD CD44H fragment in a MT1-MMP-dependent manner. Expression of the mutant CD44H in the cells as well as MMP inhibitor treatment effectively inhibited the migration, suggesting that MIA PaCa-2 cells indeed use the CD44H and MT1-MMP as migratory devices. These findings revealed a novel interaction of the two molecules that have each been implicated in tumor cell migration and invasion.  相似文献   

16.
Melanoma brain metastasis (MBM) is frequent and has a very poor prognosis with no current predictive factors or therapeutic molecular targets. Our study unravels the molecular alterations of cell‐surface glycoprotein CD44 variants during melanoma progression to MBM. High expression of CD44 splicing variant 6 (CD44v6) in primary melanoma (PRM) and regional lymph node metastases from AJCC Stage IIIC patients significantly predicts MBM development. The expression of CD44v6 also enhances the migration of MBM cells by hyaluronic acid and hepatocyte growth factor exposure. Additionally, CD44v6‐positive MBM migration is reduced by blocking with a CD44v6‐specific monoclonal antibody or knocking down CD44v6 by siRNA. ESRP1 and ESRP2 splicing factors correlate with CD44v6 expression in PRM, and ESRP1 knockdown significantly decreases CD44v6 expression. However, an epigenetic silencing of ESRP1 is observed in metastatic melanoma, specifically in MBM. In advanced melanomas, CD44v6 expression correlates with PTBP1 and U2AF2 splicing factors, and PTBP1 knockdown significantly decreases CD44v6 expression. Overall, these findings open a new avenue for understanding the high affinity of melanoma to progress to MBM, suggesting CD44v6 as a potential MBM‐specific factor with theranostic utility for stratifying patients.  相似文献   

17.
When secreted from malignant cells, hyaluronan facilitates tumor invasion and metastasis, as inhibition of its export by zaprinast inhibited metastasis formation in mice. However, the precise steps of the metastatic cascade, which were influenced by zaprinast, have not been identified as yet. Here we analyzed the cell biological effects of the inhibitor on three human melanoma cell lines that differed in their hyaluronan production and their metastatic capability when xenografted into SCID mice. We measured the influence of zaprinast on cellular hyaluronan export, surface coat formation, proliferation, random migration, colony formation in soft agar, adhesion, and transepithelial resistance. Concentrations of zaprinast not affecting cell proliferation, adhesion and transepithelial resistance, nevertheless reduced hyaluronan export by 50%, surface coat formation, random migration, and colony formation in soft agar. These results indicate that hyaluronan enhances metastasis formation primarily in those steps of the metastatic cascade, which involves tumor cell migration.  相似文献   

18.
Transient interactions between cancer stem cells and components of the tumor microenvironment initiate various signaling pathways crucial for carcinogenesis. Predominant hyaluronan (HA) receptor, CD44 is structurally and functionally one of the most variable cell surface receptors having the potential to generate a diverse repertory of CD44 isoforms by alternative splicing of variant exons and post-translational modifications. A structurally distinctive variant of CD44, CD44v10, has an inevitable role in malignant progression, invasion, and metastasis. This can be attributed to the binding of HA with CD44v10, which demonstrates a completely different behavioral pattern as compared to the other spliced variants of CD44 molecule. Absence of a comprehensively predicted crystal structure of human CD44s and CD44v10 is an impediment in understanding the resultant structural alterations caused by the binding of HA. Thus, in this study, we aim to predict the CD44s and CD44v10 structures to their closest native confirmation and study the HA binding-induced structural perturbations using homology modeling, molecular docking, and MD simulation approach. The results depicted that modeled 3D structures of CD44s and CD44v10 isoforms were found to be stable throughout MD simulations; however, a substantial decrease was observed in the binding affinity of HA with CD44v10 (?5.355 kcal/mol) as compared to CD44s. Furthermore, loss and gain of several H-bonds and hydrophobic interactions in CD44v10–HA complex during the simulation process not only elucidated the reason for decreased binding affinity for HA but also prompted toward the plausible role of HA-induced structural perturbations in occurrence and progression of carcinogenesis.  相似文献   

19.
CD44 enhances neuregulin signaling by Schwann cells   总被引:5,自引:0,他引:5  
We describe a key role for the CD44 transmembrane glycoprotein in Schwann cell-neuron interactions. CD44 proteins have been implicated in cell adhesion and in the presentation of growth factors to high affinity receptors. We observed high CD44 expression in early rat neonatal nerves at times when Schwann cells proliferate but low expression in adult nerves, where CD44 was found in some nonmyelinating Schwann cells and to varying extents in some myelinating fibers. CD44 constitutively associated with erbB2 and erbB3, receptor tyrosine kinases that heterodimerize and signal in Schwann cells in response to neuregulins. Moreover, CD44 significantly enhanced neuregulin-induced erbB2 phosphorylation and erbB2-erbB3 heterodimerization. Reduction of CD44 expression in vitro resulted in loss of Schwann cell-neurite adhesion and Schwann cell apoptosis. CD44 is therefore crucial for maintaining neuron-Schwann cell interactions at least partly by facilitating neuregulin-induced erbB2-erbB3 activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号