首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plant sexual reproduction involves the growth of tip-polarized pollen tubes through the female tissues in order to deliver the sperm nuclei to the egg cells. Despite the importance of this crucial step, little is known about the molecular mechanisms involved in this spatial and temporal control of the tube growth. In order to study this process and to characterize the structural composition of the extracellular matrix of the male gametophyte, immunocytochemical and biochemical analyses of Arabidopsis pollen tube wall have been carried out. Results showed a well-defined localization of cell wall epitopes with highly esterified homogalacturonan and arabinogalactan-protein mainly in the tip region, weakly methylesterified homogalacturonan back from the tip and xyloglucan and (1→5)-α-L-arabinan all along the tube. Here, we present complementary data regarding (1) the ultrastructure of the pollen tube cell wall and (2) the immunolocalization of homogalacturonan and arabinan epitopes in 16-h-old pollen tubes and in the stigma and the transmitting tract of the female organ. Discussion regarding the pattern of the distribution of the cell wall epitopes and the possible mechanisms of cell adhesion between the pollen tubes and the female tissues is provided.Key words: arabinan, cell adhesion, cell wall, homogalacturonan, pistil, pollen tube growth, transmitting tractFertilization of flowering plants requires the delivery of the two sperm cells, carried by the fast growing tip-polarized pollen tube, to the egg cell. At every stage of the pollen tube development within the stigma, style and ovary, pollen tubes are guided to the ovules via multiple signals that need to pass through the cell wall of the pollen tube to reach their targets.16The analysis of Arabidopsis pollen tube cell wall has recently been reported.7 Results showed a well-defined localization of cell wall epitopes with highly methylesterified homogalacturonan (HG) and arabinogalactan-protein (AGP) mainly in the tip region, weakly methylesterified HG back from the tip and xyloglucan and arabinan all along the tube. In addition, according to the one letter nomenclature of xyloglucan,8 the main motif of Arabidopsis pollen tube xyloglucan was XXFG harboring one O-acetyl group. In order to bring new information regarding the possible interaction between the pollen tubes and the female tissues, the ultrastructural organization of the pollen tube cell wall, the cytological staining and immunolocalization of the cell wall epitopes of the pistil and especially the transmitting tract (TT), a specialized tissue where pollen tubes grow, were carried out.  相似文献   

2.
Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell signaling. Recent advances led to the formulation of a new hydrodynamic model that explains the mechanism that drives both stochastic and oscillatory growth, as well as oscillations in cell signaling and ion fluxes. A critical analysis of evidence that has been used to challenge the validity of the hydrodynamic model yields new information on turgor pressure, cell mechanical properties and nonlinear dynamics in pollen tube growth. These results may have broader significance for plant cell growth.  相似文献   

3.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

4.
5.
6.
. Mature pollen grains of olive (Olea europaea L.) were germinated in vitro in Brewbaker and Kwack medium, and emerging pollen tubes were then enzymatically digested in the presence of high osmoticum. This treatment resulted in simultaneous degradation of pollen tube walls and fragmentation of their cytoplasm, giving rise to numerous protoplasts of different sizes and different numbers of nuclei. After the protoplasts had been purified, they were cultured in Murashige and Skoog medium supplemented with auxin and cytokinin. The initial steps of cell wall reformation were studied after 12 h and 24 h of culture with a series of cytochemical techniques including periodic acid-Schiff reagent and phosphotungstic acid, as well as with electron microscopy and immunocytochemical techniques using monoclonal antibodies directed against pectins and #-(1̅)-glucan (callose). Among the components of new wall in the protoplasts, callose proved to be the earliest and most abundantly secreted polysaccharide, whereas the deposition of pectins recognized by the antibody JIM7 started several hours later. Pectins that bind JIM5 antibody were not detected in this early stage of development. Cell wall components deposited by protoplasts were compared with those present in growing pollen tubes. Callose secreted by protoplasts formed a relatively thicker layer than that found in the tubes, and pectins recognized by JIM7 were highly abundant, mostly within the cytoplasm and in the apical zone of the tubes.  相似文献   

7.
The growth of the pollen tube wall of Oenothera is effected by the expulsion of fibrillar material from the cytoplasm into the developing wall. This material may also be seen in the cytoplasm, contained in membrane-bound vesicles. It is not clear how the content of the vesicles is discharged, but it appears not to involve the participation of microtubules. The source of the cytoplasmic fibrillar bodies depends upon the stage of development of the pollen tube. The earilest growth is derived from the inclusion into the wall of vesicles containing pre-formed materials present in the grain on pollination. During the next stage of growth the wall is derived from the content of double-membraned inclusions also present in the pollen. The content of the former vesicles is not so similar to the wall as the latter, but intermediates between the 2 types of vesicle may be seen in the cytoplasm, indicating that the former are formed from the latter. Most of the tube wall is derived from the products of dictyosomes in the pollen grain or tube. These dicytosomes are few in number and they must be exceedingly active. This, and the observation that dictyosome vesicles are frequently associated with banked complexes of mitochondria, indicates that some steps in the metabolism of the vesicular content, perhaps phosphorylation, take place distant from the dicytosomes. These different sources of fibrillar material presumably permit the rapid starting of tube growth, without any attendant metabolism. However, it would be impossible to include enough pre-formed wall material in the grain to enable the full growth of the tube, so once started, it seems that the tube then relies on the elaboration of simple reserves for the contruction of its wall. These reserves are likely to be held in the pollen, and may be the large numbers of starch grains characteristic of the pollen cytoplasm.  相似文献   

8.
The sugar composition of pollen grain and pollen tube cell walls was studied for Camellia japonica, C. sasanqua, C. sinensis, Tulipa gesneriana and Lilium longiflorum. In all species, the main components of pollen grain walls were arabinose, galactose, glucose and uronic acid. On the other hand, the pollen tube walls consisted mostly of glucose. The pollen tube wall of C. japonica was fractionated into hemicellulose, α-cellulose and pectic substance fractions in yields of 61, 19 and 3 %, respectively. The hemicellulose fraction was composed essentially of glucose. The sugar composition of the pollen tube wall was not influenced by the nature of exogenously supplied sugars. Rapid growth of the pollen tube seemed to correlate with the synthesis of hemicellulosic glucan.  相似文献   

9.
Expansins and cell wall expansion   总被引:10,自引:4,他引:6  
The subject of this review is the discovery of expansins andtheir role in plant cell wall expansion. The review is introducedwith a summary of the importance of wall expansion in the controlof plant cell growth, and a brief discussion of the nature ofcell wall extension in plants. The role of expansins in wallextension and their mechanism of action will be reviewed, and,finally, the role of expansins in plant cell growth will bediscussed. Key words: Expansins, cell expansion, cell wall extension, plant growth  相似文献   

10.
Summary When pollen of Impatiens glandulifera was cultured in aerated liquid medium for 1 h, 70% of the pollen grains germinated; these attained an average tube length of 1 mm. Subsequently, these aerobic growth conditions were changed to anaerobic by substituting a nitrogen inlet for the air inlet. As a result, the pollen tubes stopped elongating and burst. The ultrastructural changes which occurred upon inducing anoxia were studied with samples taken at 0 s, 45 s, and 4 min after changing the gas. Anoxia caused rapid and considerable changes in the ultrastructure of the dictyosome vesicles involved in cell wall formation. There was an increase in the osmiophyly of the vesicle content, and the presence of fibrillar material became apparent. Simultaneously, the fusion behavior of the dictyosome vesicles changed. Instead of the normal fusion of the dictyosome vesicles with the plasma membrane, there was a premature fusion of the vesicles with each other inside the cytoplasm that resulted in the formation of aggregates. Furthermore, the cell wall precursors that were excreted were not incorporated in their usual configuration into the growing cell wall. Instead of a smooth inner cell wall surface, irregular thickenings were formed.  相似文献   

11.
12.
13.
Plant cell expansion: scaling the wall   总被引:5,自引:0,他引:5  
The regulation of plant cell size and shape is poorly understood at the molecular level. Recently, two loci required for normal cell expansion in Arabidopsis were cloned. They both encode enzymes involved in the construction of the cell wall. These studies are the first promising examples of the use of Arabidopsis molecular genetics for the study of wall synthesis and assembly during plant cell elongation.  相似文献   

14.
Summary In order to compare cell wall formation in gymnosperm pollen with that in angiosperm pollen, the distribution of cell wall constituents in the pollen grain and pollen tube ofPinus densiflora was studied immunocytochemically with monoclonal antibodies JIM 5 (against non- or poorly esterified pectin), JIM 7 (against highly esterified pectin), JIM 13 (against arabinogalactan proteins, AGPs), and LM 2 (against AGPs containing glucuronic acid). In the pollen grain wall, only the outer layer of the intine was labeled with JIM 5 and weakly with JIM 7. The tube wall was scarcely labeled with JIM 5 and very weakly labeled with JIM 7. In contrast, the whole of both the intine and the tube wall was strongly labeled with JIM 13 and LM 2, and the generative-cell wall was also labeled only with LM 2. The hemicellulose B fraction, which is the main polysaccharide fraction from the pollen tube wall, reacted strongly with JIM 13 and especially LM 2, but not with antipectin antibodies. These results demonstrate that the wall constituents and their localization inP. densiflora pollen are considerably different from those reported in angiosperm pollen and suggest that the main components of the cell wall ofP. densiflora pollen are arabinogalactan and AGPs containing glucuronic acid.Abbreviations AGPs arabinogalactan proteins - ELISA enzymelinked immunosorbent assay - MAbs monoclonal antibodies  相似文献   

15.
Our model proposes that pollen tube growth is a form of cell movement where the tube tip can be considered analogous to a migrating cell which leaves a trail of extracellular matrix (the spent pollen tube) behind. We demonstrate that the tube cell can convey the sperm cells to the ovule and effect fertilization even in the absence of the pollen grain and the spent pollen tube. Adhesion is an integral part of cell attachment and movement in animal systems. We show that in vivo-grown pollen tubes grow beneath the cuticle of the stylar transmitting tract epidermis and directly adhere to one another and the outer wall of the epidermal cells. A fibrous wall material is found to cover the tip of the pollen tube cell wall and the surface of the transmitting tract cells where the two adhere. Fixation methods to preserve adhesive compounds were used. The pollen-tubes grown in vivo, but not in vitro, show star-shaped clusters of F-actin microfilaments in the region back from the tip, as seen by rhodamine-phalloidin staining. These configurations are similar to focal adhesions seen in moving animal cells.  相似文献   

16.
By chemical analyses in addition to IR spectroscopy and staining reactions, cellulose and a β-1,3-glucan (callose) were demonstrated to occur in the  相似文献   

17.
18.
The surface of a pollen grain consists of an outermost coat and an underlying wall. In maize (Zea mays L.), the pollen coat contains two major proteins derived from the adjacent tapetum cells in the anthers. One of the proteins is a 35-kDa endoxylanase (Wu, S. S. H., Suen, D. F., Chang, H. C., and Huang, A. H. C. (2002) J. Biol. Chem. 277, 49055-49064). The other protein of 70 kDa was purified to homogeneity and shown to be a beta-glucanase. Its gene sequence and the developmental pattern of its mRNA differ from those of the known beta-glucanases that hydrolyze the callose wall of the microspore tetrad. Mature pollen placed in a liquid medium released about nine major proteins. These proteins were partially sequenced and identified via GenBank trade mark data bases, and some had not been previously reported to be in pollen. They appear to have wall-loosening, structural, and enzymatic functions. A novel pollen wall-bound protein of 17 kDa has a unique pattern of cysteine distribution in its sequence (six tandem repeats of CX3CX10-15) that could chelate cations and form signal-receiving finger motifs. These pollen-released proteins were synthesized in the pollen interior, and their mRNA increased during pollen maturation and germination. They were localized mainly in the pollen tube wall. The pollen shell was isolated and found to contain no detectable proteins. We suggest that the pollen-coat beta-glucanase and xylanase hydrolyze the stigma wall for pollen tube entry and that the pollen secrete proteins to loosen or become new wall constituents of the tube and to break the wall of the transmitting track for tube advance.  相似文献   

19.
Augmented growth equation for cell wall expansion   总被引:5,自引:2,他引:3       下载免费PDF全文
Ortega JK 《Plant physiology》1985,79(1):318-320
The Growth Equation representing the relative rate of irreversible wall expansion is augmented with an elastic expansion component. Some of the utility of this augmented Growth Equation is demonstrated through selected applications.  相似文献   

20.
Auxin-induced cell expansion in relation to cell wall extensibility   总被引:3,自引:0,他引:3  
Decapitation of 30 mm oat coleoptiles, which are commonly usedfor growth tests, resulted in a decrease in their elastic extensibility(DE) but not in their plastic extensibility (DP). By auxin treatmentunder osmotic stress, old coleoptile (45 mm) cells showed noincrease in subsequent expansion in water, whereas RNA synthesisin these cells was stimulated just as in young ones. Auxin increasedthe DE of young coleoptile cell walls but not that of old ones.Significant increase of DE occurred in only 10 min, and themaximum level of DE was reached in 15 min of the auxin treatment.An antiauxin (2,4,6-trichlorophenoxyacetic acid), mitomycinC and cycloheximide inhibited auxin-induced increases in expansionand DE (or Rex, reversible extensibility) of young coleoptilecells. (Received July 23, 1968; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号