首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

2.
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.  相似文献   

3.
Lloyd V 《Genetica》2000,109(1-2):35-44
Genetic imprinting is a form of epigenetic silencing. But with a twist. The twist is that while imprinting results in the silencing of genes, chromosome regions or entire chromosome sets, this silencing occurs only after transmission of the imprinted region by one sex of parent. Thus genetic imprinting reflects intertwined levels of epigenetic and developmental modulation of gene expression. Imprinting has been well documented and studied in Drosophila, however, these studies have remained largely unknown due to nothing more significant than differences in terminology. Imprinting in Drosophilais invariably associated with heterochromatin or regions with unusual chromatin structure. The imprint appears to spread from imprinted centers that reside within heterochromatin and these are, seemingly, the only regions that are normally imprinted in Drosophila. This is significant as it implies that while imprinting occurs in Drosophila, it is generally without phenotypic consequence. Hence the evolution of imprinting, at least in Drosophila, is unlikely to be driven by the function of specific imprinted genes. Thus, the study of imprinting in Drosophilahas the potential to illuminate the mechanism and biological function of imprinting, and challenge models based solely on imprinting of mammalian genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.  相似文献   

5.
Many increasingly prevalent diseases share a common risk factor: age. However, little is known about pharmaceutical interventions against aging, despite many genes and pathways shown to be important in the aging process and numerous studies demonstrating that genetic interventions can lead to a healthier aging phenotype. An important challenge is to assess the potential to repurpose existing drugs for initial testing on model organisms, where such experiments are possible. To this end, we present a new approach to rank drug‐like compounds with known mammalian targets according to their likelihood to modulate aging in the invertebrates Caenorhabditis elegans and Drosophila. Our approach combines information on genetic effects on aging, orthology relationships and sequence conservation, 3D protein structures, drug binding and bioavailability. Overall, we rank 743 different drug‐like compounds for their likelihood to modulate aging. We provide various lines of evidence for the successful enrichment of our ranking for compounds modulating aging, despite sparse public data suitable for validation. The top ranked compounds are thus prime candidates for in vivo testing of their effects on lifespan in C. elegans or Drosophila. As such, these compounds are promising as research tools and ultimately a step towards identifying drugs for a healthier human aging.  相似文献   

6.
7.
Drosophila melanogaster has been used as a biological model system for almost a century. In the last several decades,Drosophila has been used as a system to probe the molecular basis of behavior and discoveries in the fly have been at the forefront of the elucidation of important basic mechanisms. This review will outline the variety of approaches that makeDrosophila an excellent model system with which to study the function of the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity. CaMKII has a well documented role in behavior and synaptic plasticity in both vertebrates and invertebrates. The behavioral and genetic richness ofDrosophila allow for a multi-level approach to understanding the physiological roles of this enzyme's function.  相似文献   

8.
The Drosophila melanogaster broad locus is essential for normal metamorphic development. Broad encodes three genetically distinct functions (rbp, br, and 2Bc) and a family of four zinc-finger DNA-binding proteins (Z1-Z4). The Z1, Z2, and Z3 protein isoforms are primarily associated with the rbp, br, and 2Bc genetic functions respectively. The Z4 protein isoform also provides some rbp genetic function, however an essential function for the Z4 isoform in metamorphosis has not been identified. To determine the degree of conservation of Z4 function between the tobacco hornworm Manduca sexta and Drosophila we generated transgenic Drosophila expressing the Manduca broad Z4 isoform and used this transgene to rescue rbp mutant lethality during Drosophila metamorphosis. We find that the Manduca Z4 protein has significant biological activity in Drosophila with respect to rescue of rbp-associated lethality. There was also some overlap in effects on cuticle gene expression between the Manduca Z4 and Drosophila Z1 isoforms that was not shared with the Drosophila Z4 isoform. Our findings show that Z4 function has been conserved over the 260-million-year period since the divergence of Diptera and Lepidoptera, and are consistent with the hypothesis that the Drosophila Z4 and Manduca Z4 isoforms have essential roles in metamorphosis.Edited by M. Akam  相似文献   

9.
Nutrient allocation and usage plays an important part in regulating the onset and progression of age‐related functional declines. Here, we describe a heterozygous mutation in Drosophila (dFatp) that alters nutrient distribution and multiple aspects of physiology. dFatp mutants have increased lifespan and stress resistance, altered feeding behavior and fat storage, and increased mobility. Concurrently, mutants experience impairment of cardiac function. We show that endurance exercise reverses increased lipid storage in the myocardium and the deleterious cardiac function conferred by dFatp mutation. These findings establish a novel conserved genetic target for regulating lifespan and physiology in aging animals. These findings also highlight the importance of varying exercise conditions in assessing aging functions of model organisms.  相似文献   

10.
How complex interactions of genetic, environmental factors and aging jointly contribute to dopaminergic degeneration in Parkinson's disease (PD) is largely unclear. Here, we applied frequent gene co‐expression analysis on human patient substantia nigra‐specific microarray datasets to identify potential novel disease‐related genes. In vivo Drosophila studies validated two of 32 candidate genes, a chromatin‐remodeling factor SMARCA4 and a biliverdin reductase BLVRA. Inhibition of SMARCA4 was able to prevent aging‐dependent dopaminergic degeneration not only caused by overexpression of BLVRA but also in four most common Drosophila PD models. Furthermore, down‐regulation of SMARCA4 specifically in the dopaminergic neurons prevented shortening of life span caused by α‐synuclein and LRRK2. Mechanistically, aberrant SMARCA4 and BLVRA converged on elevated ERK‐ETS activity, attenuation of which by either genetic or pharmacological manipulation effectively suppressed dopaminergic degeneration in Drosophila in vivo. Down‐regulation of SMARCA4 or drug inhibition of MEK/ERK also mitigated mitochondrial defects in PINK1 (a PD‐associated gene)‐deficient human cells. Our findings underscore the important role of epigenetic regulators and implicate a common signaling axis for therapeutic intervention in normal aging and a broad range of age‐related disorders including PD.  相似文献   

11.
Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.  相似文献   

12.
Facultative heritable bacterial endosymbionts can have dramatic effects on their hosts, ranging from mutualistic to parasitic. Within-host bacterial endosymbiont density plays a critical role in maintenance of a symbiotic relationship, as it can affect levels of vertical transmission and expression of phenotypic effects, both of which influence the infection prevalence in host populations. Species of genus Drosophila are infected with Spiroplasma, whose characterized phenotypic effects range from that of a male-killing reproductive parasite to beneficial defensive endosymbiont. For many strains of Spiroplasma infecting at least 17 species of Drosophila, however, the phenotypic effects are obscure. The infection prevalence of these Spiroplasma vary within and among Drosophila species, and little is known about the within-host density dynamics of these diverse strains. To characterize the patterns of Spiroplasma density variation among Drosophila we used quantitative PCR to assess bacterial titer at various life stages of three species of Drosophila naturally-infected with two different types of Spiroplasma. For naturally infected Drosophila species we found that non-male-killing infections had consistently lower densities than the male-killing infection. The patterns of Spiroplasma titer change during aging varied among Drosophila species infected with different Spiroplasma strains. Bacterial density varied within and among populations of Drosophila, with individuals from the population with the highest prevalence of infection having the highest density. This density variation underscores the complex interaction of Spiroplasma strain and host genetic background in determining endosymbiont density.  相似文献   

13.
Members of the RNA-dependent RNA polymerase (RdRP) gene family have been shown to be essential for dsRNA-mediated gene silencing based on genetic screens in a variety of organisms, including Caenorhabditis elegans, Arabidopsis, Neurospora, and Dictyostelium. A hallmark of this process is the formation of small 21- to 25-bp dsRNAs, termed siRNAs for small interfering RNAs, which are derived from the dsRNA that initiates gene silencing. We have developed methods to demonstrate that these siRNAs produced in Drosophila embryo extract can be uniformly incorporated into dsRNA in a template-specific manner that is subsequently degraded by RNase III-related enzyme activity to create a second generation of siRNAs. SiRNA function in dsRNA synthesis and mRNA degradation depends upon the integrity of the 3-hydroxyl of the siRNA, consistent with the interpretation that siRNAs serve as primers for RdRP activity in the formation of dsRNA. This process of siRNA incorporation into dsRNA followed by degradation and the formation of new siRNAs has been termed “degradative PCR” and the proposed mechanism is consistent with the genetic and biochemical data derived from studies in C. elegans, Arabidopsis, Drosophila, and Dictyostelium. The methods used to study the function of both natural and synthetic siRNAs in RNA interference in Drosophila embryo extracts are detailed. The importance of the 3-hydroxyl group for siRNA function and its incorporation into dsRNA is emphasized and the results support a model that places RNA-dependent RNA polymerase as a key mediator in the RNA interference mechanism in Drosophila.  相似文献   

14.
15.
Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its independence from that responsible for other traits’ decline with age. Replicate experimental populations experienced either joint selection on learning and reproduction at old age (Old + Learning), selection on late‐life reproduction alone (Old), or a standard two‐week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher late‐life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in improved late‐life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow the same trajectories.  相似文献   

16.
lats基因(large tumor suppressor gene)最早在果蝇中发现,在小鼠和人中均有同源基因.该基因的功能从果蝇到人是高度保守的.lats基因的功能包括:作为肿瘤抑制基因,其突变会导致肿瘤的发生;磷酸化的Lats与Cdc2结合,参与细胞周期的调控;通过细胞-细胞间的通讯,可能参与生物体个体大小的调控机制.从果蝇到人lats基因功能的研究,提供了以果蝇作为模式生物研究哺乳动物基因功能的方法.  相似文献   

17.
Myoglianin, the Drosophila homolog of the secreted vertebrate proteins Myostatin and GDF-11, is an important regulator of neuronal modeling, and synapse function and morphology. While Myoglianin suppression during development elicits positive effects on the neuromuscular system, genetic manipulations of myoglianin expression levels have a varied effect on the outcome of performance tests in aging flies. Specifically, Myoglianin preserves jumping ability, has no effect on negative geotaxis, and negatively regulates flight performance in aging flies. In addition, Myoglianin exhibits a tissue-specific effect on longevity, with myoglianin upregulation in glial cells increasing the median lifespan. These findings indicate complex role for this TGF-β-like protein in governing neuromuscular signaling and consequent behavioral outputs and lifespan in adult flies.  相似文献   

18.
microRNAs(miRNAs)是一类长度约22个核苷酸的非编码RNA.这是一种广泛存在于真核生物中的内源性单链小分子RNA,miRNAs通过部分碱基对互补方式与靶基因结合,在转录和转录后水平调节靶基因表达.最近研究发现,miRNAs可以靶向多个衰老相关信号通路,在线虫、果蝇、小鼠和人类的衰老过程中发挥了重要的调控作用.本文总结了近年来与衰老相关的miRNAs的研究进展,首先介绍衰老相关的信号通路,然后重点介绍与线虫和哺乳动物衰老有关的miRNAs,以及这些miRNAs如何调控衰老相关信号通路,从而影响细胞、组织和整个机体的衰老进程和衰老相关性疾病,最后展望该领域未来的研究方向.  相似文献   

19.
Survival records of longevity experiments are a key component in research on aging. However, surprisingly there have been very few cross‐study analyses, besides comparisons of median lifespans or similar summary information. Here, we use a large set of full survival data from various studies to address questions in aging, which are beyond the scope of individual studies. We characterize survival differences between female and male flies of different genetic Drosophila strains, showing significant differences between strains. We further analyse the variation in survival of control cohorts recorded under highly similar conditions within different Drosophila strains. We found that overall transgenic constructs of the UAS/GAL4 expression system which should have no effect (e.g. a GAL4 construct alone) extend lifespan significantly in the w1118 strain. Using a large data set comprised of various studies, we found no evidence for larger lifespan extensions being associated with shorter lifespans of the control in Drosophila. This demonstrates that lifespan extending treatments are not purely rescuing weak backgrounds.  相似文献   

20.
The function of conserved novel human genes can be efficiently addressed in genetic model organisms. From a collection of genes expressed in the Drosophila visual system, cDNAs expressed in vertebrates were identified and one similar to a novel human gene was chosen for further investigation. The results reported here characterize the Drosophila retinophilin gene and demonstrate that a similar gene is expressed in the human retina. The Drosophila and human retinophilin sequences are 50% identical, and they share an additional 16% conserved substitutions. Examination of the cDNA and genomic sequence indicates that it corresponds to the gene CG10233 of the annotated genome and predicts a 22.7 kDa protein. Polyclonal antibodies generated to a predicted retinophilin peptide recognize an antigen in Drosophila photoreceptor cells. The retinophilins encode 4 copies of a repeat associated with a Membrane Occupation and Recognition Nexus (MORN) function first discovered in junctophilins, which may interact with the plasma membrane. These results therefore show that Drosophila retinophilin is expressed in fly photoreceptor cells, demonstrate that a conserved human gene is expressed in human retina, and suggest that a mutational analysis of the Drosophila gene would be valuable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号