首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The replication of circular DNA faces topological obstacles that need to be overcome to allow the complete duplication and separation of newly replicated molecules. Small bacterial plasmids provide a perfect model system to study the interplay between DNA helicases, polymerases, topoisomerases and the overall architecture of partially replicated molecules. Recent studies have shown that partially replicated circular molecules have an amazing ability to form various types of structures (supercoils, precatenanes, knots and catenanes) that help to accommodate the dynamic interplay between duplex unwinding at the replication fork and DNA unlinking by topoisomerases.  相似文献   

2.
Mutants in bacterial topoisomerase (topo) IV are deficient in chromosomal partitioning. To investigate the basis of this phenotype, we examined plasmid DNA topology in conditionally lethal topo IV mutants. We found that dimeric catenated plasmids accumulated in vivo after topo IV inhibition. The catenanes were supercoiled, contained from 2 to > 32 nodes, and were the products of DNA synthesis. Electron microscopy and recombination tests proved that the catenanes have the unique structure predicted for replication intermediates. These data provide strong evidence for a model in which unlinking of the double helix can occur in two stages during DNA replication and for the critical role of topo IV in the second stage. The interlocks in the catenanes appear to be sequestered from DNA gyrase, perhaps by compartmentalization in an enzyme complex dedicated to partitioning.  相似文献   

3.
Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.  相似文献   

4.
This article is a perspective on the separation of the complementary strands of DNA during replication. Given the challenges of DNA strand separation and its vital importance, it is not surprising that cells have developed many strategies for promoting unlinking. We summarize seven different factors that contribute to strand separation and chromosome segregation. These are: (1) supercoiling promotes unlinking by condensation of DNA; (2) unlinking takes place throughout a replicating domain by the complementary action of topoisomerases on precatenanes and supercoils; (3) topological domains isolate the events near the replication fork and permit the supercoiling-dependent condensation of partially replicated DNA; (4) type-II topoisomerases use ATP to actively unlink DNA past the equilibrium position; (5) the effective DNA concentration in vivo is less than the global DNA concentration; (6) mechanical forces help unlink chromosomes; and (7) site-specific recombination promotes unlinking at the termination of replication by resolving circular dimeric chromosomes.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
DNA replication requires the unwinding of the parental duplex, which generates (+) supercoiling ahead of the replication fork. It has been thought that removal of these (+) supercoils was the only method of unlinking the parental strands. Recent evidence implies that supercoils can diffuse across the replication fork, resulting in interwound replicated strands called precatenanes. Topoisomerases can then act both in front of and behind the replication fork. A new study by Sogo et al. [J Mol Biol 1999;286:637-643 (Ref. 1)], using a topological analysis, provides the best evidence that precatenanes exist in negatively supercoiled, partially replicated molecules in vivo.  相似文献   

6.
7.
Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIα, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51 ± 0.33 μm (11 ± 6 turns) of a braid was unlinked in a burst of reactions taking 8 ± 4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25-37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being ~100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of ~10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break ~10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments.  相似文献   

8.
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.  相似文献   

9.
The tyrosine family of recombinases produces two smaller DNA circles when acting on circular DNA harboring two recombination sites in head-to-tail orientation. If the substrate is supercoiled, these circles can be unlinked or form multiply linked catenanes. The topological complexity of the products varies strongly even for similar recombination systems. This dependence has been solved here. Our computer simulation of the synapsis showed that the bend angles, phi, created in isolated recombination sites by protein binding before assembly of the full complex, determine the product topology. To verify the validity of this theoretical finding we measured the values of phi for Cre/loxP and Flp/FRT systems. The measurement was based on cyclization of the protein-bound short DNA fragments in solution. Despite the striking similarity of the synapses for these recombinases, action of Cre on head-to-tail target sites produces mainly unlinked circles, while that of Flp yields multiply linked catenanes. In full agreement with theoretical expectations we found that the values of phi for these systems are very different, close to 35 degrees and 80 degrees, respectively. Our findings have general implications in how small protein machines acting locally on large DNA molecules exploit statistical properties of their substrates to bring about directed global changes in topology.  相似文献   

10.
We systematically varied conditions of two-dimensional (2D) agarose gel electrophoresis to optimize separation of DNA topoisomers that differ either by the extent of knotting, the extent of catenation or the extent of supercoiling. To this aim we compared electrophoretic behavior of three different families of DNA topoisomers: (i) supercoiled DNA molecules, where supercoiling covered the range extending from covalently closed relaxed up to naturally supercoiled DNA molecules; (ii) postreplicative catenanes with catenation number increasing from 1 to ∼15, where both catenated rings were nicked; (iii) knotted but nicked DNA molecules with a naturally arising spectrum of knots. For better comparison, we studied topoisomer families where each member had the same total molecular mass. For knotted and supercoiled molecules, we analyzed dimeric plasmids whereas catenanes were composed of monomeric forms of the same plasmid. We observed that catenated, knotted and supercoiled families of topoisomers showed different reactions to changes of agarose concentration and voltage during electrophoresis. These differences permitted us to optimize conditions for their separation and shed light on physical characteristics of these different types of DNA topoisomers during electrophoresis.  相似文献   

11.
12.
DNA supercoiling is one of the mechanisms that can help unlinking of newly replicated DNA molecules. Although DNA topoisomerases, which catalyze the strand passing of DNA segments through one another, make the unlinking problem solvable in principle, it remains difficult to complete the process that enables the separation of the sister duplexes. A few different mechanisms were developed by nature to solve the problem. Some of the mechanisms are very intuitive while the others, like topology simplification by type II DNA topoisomerases and DNA supercoiling, are not so evident. A computer simulation and analysis of linked sister plasmids formed in Escherichia coli cells with suppressed topoisomerase IV suggests an insight into the latter mechanism.  相似文献   

13.
14.
Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.  相似文献   

15.
It was found recently that bacterial type II DNA topoisomerase, topo IV, is much more efficient in relaxing (+) DNA supercoiling than (-) supercoiling. This means that the DNA-enzyme complex is chiral. This chirality can appear upon binding the first segment that participates in the strand passing reaction (G segment) or only after the second segment (T segment) joins the complex. The former possibility is analyzed here. We assume that upon binding the enzyme, the G segment forms a part of left-handed helical turn. This model is an extension of the hairpin model introduced earlier to explain simplification of DNA topology by these enzymes. Using statistical-mechanical simulation of DNA properties, we estimated different consequences of the model: (1) relative rates of relaxation of (+) and (-) supercoiling by the enzyme; (2) the distribution of positions of the G segment in supercoiled molecules; (3) steady-state distribution of knots in circular molecules created by the topoisomerase; (4) the variance of topoisomer distribution created by the enzyme; (5) the effect of (+) and (-) supercoiling on the binding topo II with G segment. The simulation results are capable of explaining nearly all available experimental data, at least semiquantitatively. A few predictions obtained in the model analysis can be tested experimentally.  相似文献   

16.
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.  相似文献   

17.
Movement of the DNA replication machinery through the double helix induces acute positive supercoiling ahead of the fork and precatenanes behind it. Because topoisomerase I and II create transient single- and double-stranded DNA breaks, respectively, it has been assumed that type I enzymes relax the positive supercoils that precede the replication fork. Conversely, type II enzymes primarily resolve the precatenanes and untangle catenated daughter chromosomes. However, studies on yeast and bacteria suggest that type II topoisomerases may also function ahead of the replication machinery. If this is the case, then positive DNA supercoils should be the preferred relaxation substrate for topoisomerase IIalpha, the enzyme isoform involved in replicative processes in humans. Results indicate that human topoisomerase IIalpha relaxes positively supercoiled plasmids >10-fold faster than negatively supercoiled molecules. In contrast, topoisomerase IIbeta, which is not required for DNA replication, displays no such preference. In addition to its high rates of relaxation, topoisomerase IIalpha maintains lower levels of DNA cleavage complexes with positively supercoiled molecules. These properties suggest that human topoisomerase IIalpha has the potential to alleviate torsional stress ahead of replication forks in an efficient and safe manner.  相似文献   

18.
The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo.  相似文献   

19.

Background  

The process of DNA replication requires the separation of complementary DNA strands. In this process, the unwinding of circularly closed or long DNA duplices leads to torsional tensions which must be released by topoisomerases. So topoisomerases play an important role in DNA replication. In order to provide more information about topoisomerases in the initiation of mammalian replication, we investigated whether topoisomerases occur close to ORC in the chromatin of cultured human HeLa cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号