首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳离子束辐照拟南芥介导外源基因转移的研究   总被引:2,自引:0,他引:2  
采用700keV或4.0MeV碳离子束辐照拟南芥种子,通过对样品的显微摄影,发现随着辐照剂量的增加,碳离子束对种子表面的损伤逐渐加剧,特别是在4.0MeV碳离子束辐照下,当剂量达到1×1014ions·cm-2后,种皮局部逐渐被刻蚀殆尽,甚至造成种皮局部破裂。对拟南芥种子进行台盼蓝染色后的显微观测显示,碳离子束辐照可以导致拟南芥种皮细胞着染,在剂量较大的情况下,部分皮下细胞也可着染,表明碳离子束可作用到皮下细胞,为外源基因提供导入的通道。GUS基因导入后的组织化学检测表明:质粒pCAMBIA1301能够进入4.0MeV碳离子束辐照后的拟南芥种子,并在种子和幼芽中获得瞬间表达。  相似文献   

2.
氮离子束对小麦种子不同部位作用的突变效应   总被引:3,自引:0,他引:3  
本文描述了荷能重离子束(^14氮^1 和^14氮^7 )在作物改良上的应用。为了探讨离子束轰击小麦种子不同部位(例如:种皮,种胚和整粒种籽,包括胚乳、胚和种皮)后的不同反应,采用了不同能量的氮离子。轰击不同部位是通过改变离子能量来实现的。在这个研究中,我们选择了三种能量以达到轰击不同部位的目的,它们是超低能区的110keV,低能区的15.7MeV/u和中能区的72MeV/u.根据TRIM 91程序计算,它们在种子内的射程依次为0.44μm,0.61mm和9.6mm。所以,110keV的离子不能贯穿种皮,因为它的厚度72μm,只能极浅层注入种皮而不能触及胚细胞(称这种情况为轰击部位1),15.7MeV/u的离子能够贯穿种皮并注入胚内(厚度约1mm),但不能进入胚乳(称这为轰击部位2),72MeV/u的离子能从种子的胚部到顶部贯穿整个麦粒(麦粒长约7mm)(称这为轰击部位3)。上述三种能量的氮离子辐照了三个品种(定西24、88-12、82-579)的春小麦种子。而后进行了室内实验和大田培育,得到了50%出苗率时的剂量D50,统计了上述三个轰击部位下根尖细胞中的微核率及染色体畸变率,大田中产生了一些新的变异,例如增产(达百分之几十),早熟(五天左右),矮杆(低约20cm),抗(条锈)病,并且显示了轰击不同部位的突变频率与突变谱,还简略地讨论了三种情况的突变机理。  相似文献   

3.
The ion microprobe SNAKE at the Munich 14 MV tandem accelerator achieves beam focussing by a superconducting quadrupole doublet and can make use of a broad range of ions and ion energies, from 20 MeV protons to 200 MeV gold ions. Because of these properties, SNAKE is particularly attractive for biological microbeam experiments. Here we describe the adaptation of SNAKE for microirradiation of cell samples. This includes enlarging of the focal distance in order to adjust the focal plane to the specimen stage of a microscope, construction of a beam exit window in a flexible nozzle and of a suitable cell containment, as well as development of procedures for on-line focussing of the beam, preparation of single ions and scanning by electrostatic deflection of the beam. When irradiating with single 100 MeV 16O ions, the adapted set-up permits an irradiation accuracy of 0.91 µm (full width at half maximum) in the x-direction and 1.60 µm in the y-direction, as demonstrated by retrospective track etching of polycarbonate foils. Accumulation of the repair protein Rad51, as detected by immunofluorescence, was used as a biological track detector after irradiation of HeLa cells with geometric patterns of counted ions. Observed patterns of fluorescence foci agreed reasonably well with irradiation patterns, indicating successful adaptation of SNAKE. In spite of single ion irradiation, we frequently observed split fluorescence foci which might be explained by small-scale chromatin movements.  相似文献   

4.
The induction of inactivation and mutation to thioguanine-resistance of two types of cultured mammalian cells, V79 Chinese hamster and HF19 human diploid, was studied after irradiation with aluminium K characteristic ultrasoft X-rays, helium ion track intersections of different LET, 42 MeV d-Be neutrons, and hard X- or gamma-rays. The form of the dose-response curves was different for the two cell-types, and there was an overall difference in radiosensitivity, the human cells being the more sensitive to all radiations. However, for both inactivation and mutation-induction, the relative responses of both cell-types to these radiations was similar. Aluminium X-rays were considerably more effective than hard X- or gamma-rays and were at least as effective as helium ions of 20-28 keV micron-1, although aluminium X-rays produce tracks of very limited range (less than about 0.07 micron). Single track effects by aluminium X-rays cannot, therefore, extend beyond about 0.07 micron, and the subcellular sites involved in inactivation and mutation cannot be greater than this dimension or else the effectiveness of aluminium X-rays would be similar to that of low-LET radiations. This observation is in contradiction to models of radiation action which require relatively large sensitive sites; for example the 'theory of dual radiation action' requires a site diameter of about 0.4 micron to explain the shape of the dose-response curves for V79 hamster cells.  相似文献   

5.
Neoplastic cell transformation by heavy ions   总被引:1,自引:0,他引:1  
We have studied the induction of morphological transformation by heavy ions. Golden hamster embryo cells were irradiated with 95 MeV 14N ions (530 keV/microns), 22 MeV 4He ions (36 keV/microns), and 22 MeV 4He ions with a 100-microns Al absorber (77 keV/microns) which were generated by a cyclotron at the Institute of Physical and Chemical Research in Japan. Colonies were considered to contain neoplastically transformed cells when the cells were densely stacked and made a crisscross pattern. It was shown that the induction of transformation was much more effective with 14N and 4He ions than with gamma or X rays. The relative biological effectiveness (RBE) relative to 60Co gamma rays was 3.3 for 14N ions, 2.4 for 4He ions, and 3.3 for 4He ions with a 100-microns Al absorber. The relationship between RBE and linear energy transfer was qualitatively similar for both cell death and transformation.  相似文献   

6.
As the first step for the analysis of the biological effect of heavy charged-particle radiation, we established a method for the irradiation of individual cells with a heavy-ion microbeam apparatus at JAERI-Takasaki. CHO-K1 cells attached on a thin film of an ion track detector, CR-39, were automatically detected under a fluorescence microscope and irradiated individually with an 40Ar13+ ion (11.5 MeV/nucleon, LET 1260 keV/microm) microbeam. Without killing the irradiated cells, trajectories of irradiated ions were visualized as etch pits by treatment of the CR-39 with an alkaline-ethanol solution at 37 degrees C. The exact positions of ion hits were determined by overlaying images of both cells and etch pits. The cells that were irradiated with argon ions showed a reduced growth in postirradiation observations. Moreover, a single hit of an argon ion to the cell nucleus resulted in strong growth inhibition. These results tell us that our verified irradiation method enables us to start a precise study of the effects of high-LET radiation on cells.  相似文献   

7.
目的 阴极荧光(CL)成像是一种以电子束为激发源的高分辨荧光成像技术,但生物材料对电子束的敏感性限制了CL技术在生命科学中的广泛应用。为了研究和发展CL技术在生物样品中的应用,本文旨在通过探究电子辐照引起碳基材料的结构损伤、有机基团的降解及荧光猝灭等问题,深入理解电子源对有机荧光团的激发特性。方法 本研究应用扫描电镜(SEM)和阴极荧光谱仪系统(SEM-CL),研究电子源对有机荧光团及荧光探针标记细胞的激发特性,观测了有机物的CL信号的发射特性、强度衰减、成像方式及特点。结果 实验结果显示,在低能量(2.5~5 keV)和低束流(~10 pA)电子辐照下,有机荧光微珠发射出较强的荧光,CL像分辨率达到~30 nm。荧光微珠经过12 min辐照,信号强度衰减了25%,CL像仍保持了可接受的发光强度和足够的信噪比。此外,还获得了从细胞表面到内部一定深度内,荧光标记的亚细胞结构信息。结论 在SEM-CL系统中,可以同时获得由电子束激发产生的电子像和CL像,实现阴极荧光与电子显微镜关联(CCLEM)成像。本实验的研究结果为CCLEM技术应用于生物结构研究提供了数据及技术支持。  相似文献   

8.
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions generated by HIMAC at NIRS and BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis focusing on the dependencies of (1) the animal strains with different radiation sensitivities, and (2) LET with different nuclei. Of the three mouse strains, SCID, B6 and C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to both X-ray and carbon ion ( 290 MeV/n) as evaluated by 10% apoptotic criterion. However, the sensitivity differences among the strains were much smaller in case of carbon ion comparing to that of X-ray. Regarding the LET dependency, the sensitivity was compared with using C3H and B6 cells between the carbon (13 keV/micrometers) and neon (70 keV/micrometers) ions. Carbon (290 MeV/n) did not give a detectable LET dependency from the criterion whereas the neon (400 MeV/n) showed 1.4 fold difference for both C3H and B6 cells. Although a LET dependency was examined by using the most sensitive SCID cells, no significant difference was detected.  相似文献   

9.
The nematode Caenorhabditis elegans is an excellent model organism with which to study the biological effects and mechanisms of ionizing irradiation. In this study, using C. elegans as a model, the effects of keV low-energy argon ion irradiation were investigated, by examining cuticle damage, worm survival, brood size, life span, and germ cell death. The surface etching of worm cuticle after ion impact was investigated by trypan blue staining and SEM microscopy. The degree of damage increased with ion fluence (2 × 1014 to 7 × 1014 ions cm−2) and energy (5–25 keV). The survival rates, as compared to vacuum control, of ion-bombarded worm larvae at different developmental stages (L1–L4) decreased with increasing ion fluence. L1 larvae were found to be more sensitive to ion bombardment than larvae at other stages. The mean brood size in ion-bombarded groups decreased with increasing ion fluence and energy. Furthermore, keV argon ions caused a significant increase in the number of apoptotic germ cells. However, average lifespan was not significantly affected.  相似文献   

10.
The microdosimetric spectra for high-energy beams of photons and proton, helium, carbon, neon, silicon and iron ions (LET = 0.5-880 keV/microm) were measured with a spherical-walled tissue-equivalent proportional counter at various depths in a plastic phantom. Survival curves for human tumor cells were also obtained under the same conditions. Then the survival curves were compared with those estimated by a microdosimetric model based on the spectra and the biological parameters for each cell line. The estimated alpha terms of the liner-quadratic model with a fixed beta value reproduced the experimental results for cell irradiation for ion beams with LETs of less than 450 keV/microm, except in the region near the distal peak.  相似文献   

11.
Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups.We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220 MeV/u 4He beam was below 6% behind 24.5 cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy.The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy.  相似文献   

12.
To clarify the relationship between cell death and chromosomal aberrations following exposure to heavy-charged ion particles beams, exponentially growing Human Salivary Gland Tumor cells (HSG cells) were irradiated with various kinds of high energy heavy ions; 13 keV/μm carbon ions as a low-LET charged particle radiation source, 120 keV/μm carbon ions and 440 keV/μm iron ions as high-LET charged particle radiation sources. X-rays (200 kVp) were used as a reference. Reproductive cell death was evaluated by clonogenic assays, and the chromatid aberrations in G2/M phase and their repairing kinetics were analyzed by the calyculin A induced premature chromosome condensation (PCC) method. High-LET heavy-ion beams introduced much more severe and un-repairable chromatid breaks and isochromatid breaks in HSG cells than low-LET irradiation. In addition, the continuous increase of exchange aberrations after irradiation occurred in the high-LET irradiated cells. The cell death, initial production of isochromatid breaks and subsequent formation of chromosome exchange seemed to be depend similarly on LET with a maximum RBE peak around 100–200 keV/μm of LET value. Conversely, un-rejoined isochromatid breaks or chromatid breaks/gaps seemed to be less effective in reproductive cell death. These results suggest that the continuous yield of chromosome exchange aberrations induced by high-LET ionizing particles is a possible reason for the high RBE for cell death following high-LET irradiation, alongside other chromosomal aberrations additively or synergistically.  相似文献   

13.
We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA-SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ∼10–20 nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA-SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100 nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues.  相似文献   

14.
We have studied the dependence of clonogenic bystander effects on defects in the pathways of DNA double-strand break (DSB) repair and on linear energy transfer (LET). The single-ion microbeam of the Physikalisch-Technische Bundesanstalt (PTB) was used to irradiate parental Chinese hamster ovary cells or derivatives deficient in nonhomologous end joining (NHEJ) or homologous recombination (HR) in the G1-phase of the cell cycle. Cell nuclei were targeted with 10 MeV protons (LET = 4.7 keV/μm) or 4.5 MeV α-particles (LET = 100 keV/μm). During exposure, the cells were confluent, allowing signal transfer through both gap junctions and diffusion. When all cell nuclei were targeted with 10 MeV protons, approximately exponential survival curves were obtained for all three cell lines. When only 10% of all cell nuclei were targeted, a significant bystander effect was observed for parental and HR-deficient cells, but not for NHEJ-deficient cells. For all three cell lines, the survival data after exposure of all cell nuclei to 4.5 MeV α-particles could be fitted by exponential curves. When only 10% of all cell nuclei were targeted, significant bystander effects were obtained for parental and HR-deficient cells, whereas for NHEJ-deficient cells a small, but significant, bystander effect was observed only at higher doses. The data suggest that bystander cell killing is a consequence of un- or misrejoined DSB which occur in bystander cells during the S-phase as a result of the processing of oxidative bistranded DNA lesions. The relative contributions of NHEJ and HR to the repairing of DSB in the late S/G2-phase may affect clonogenic bystander effects.  相似文献   

15.
The cavity in a porphyrin can accommodate metal ions through electron donor–acceptor (EDA) interaction in acetonitrile media without any specially designed fabrication with the porphyrin subunit. Alkali metal ion forms a complex with meso‐tetraphenylporphyrin (TP) in 2:1 stoichiometry, while the bivalent Mg2+ ion follows a 1:1 stoichiometry. A fluorescence interaction study indicated that TP can behave like a chemosensor for these ions present in the blood electrolytes. Specifically, for the alkali metal ions intensity‐based sensing was observed, due to inhibition of photoinduced electron transfer (PET), entailing enhancement of fluorescence intensity, and for the alkaline‐earth Mg2+ a mixed quenching was observed. Na+ and K+ ions can be differentiated depending upon the extent of fluorescence enhancement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The contribution of indirect action mediated by OH radicals to cell inactivation by ionizing radiations was evaluated for photons over the energy range from 12.4 keV to 1.25 MeV and for heavy ions over the linear energy transfer (LET) range from 20 keV/microm to 440 keV/microm by applying competition kinetics analysis using the OH radical scavenger DMSO. The maximum level of protection provided by DMSO (the protectable fraction) decreased with decreasing photon energy down to 63% at 12.4 keV. For heavy ions, a protectable fraction of 65% was found for an LET of around 200 keV/microm; above that LET, the value stayed the same. The reaction rate of OH radicals with intracellular molecules responsible for cell inactivation was nearly constant for photon inactivation, while for the heavy ions, the rate increased with increasing LET, suggesting a reaction with the densely produced OH radicals by high-LET ions. Using the protectable fraction, the cell killing was separated into two components, one due to indirect action and the other due to direct action. The inactivation efficiency for indirect action was greater than that for direct action over the photon energy range and the ion LET range tested. A significant contribution of direct action was also found for the increased RBE in the low photon energy region.  相似文献   

17.
Effect of high linear energy transfer radiation on biological membranes   总被引:2,自引:0,他引:2  
Cellular membranes are vital elements, and their integrity is extremely essential for the viability of the cells. We studied the effects of high linear energy transfer (LET) radiation on the membranes. Rabbit erythrocytes (1×107 cells/ml) and microsomes (0.6 mg protein/ml) prepared from liver of rats were irradiated with 7Li ions of energy 6.42 MeV/u and 16O ions of energy 4.25 MeV/u having maximum LET values of 354 keV/μm and 1130 keV/μm, respectively. 7Li- and 16O-induced microsomal lipid peroxidation was found to increase with fluence. The 16O ions were more effective than 7Li ions, which could be due to the denser energy distribution in the track and the yield of free radicals. These findings suggested that the biological membranes could be peroxidized on exposure to high-LET radiation. Inhibition of the lipid peroxidation was observed in the presence of a membrane-active drug, chlorpromazine (CPZ), which could be due to scavenging of free radicals (mainly HO and ROO), electron donation, and hydrogen transfer reactions. The 7Li and 16O ions also induced hemolysis in erythrocytes. The extent of hemolysis was found to be a function of time and fluence, and showed a characteristic sigmoidal pattern. The 16O ions were more effective in the lower fluence range than 7Li ions. These results were compared with lipid peroxidation and hemolysis induced by gamma-radiation. Received: 10 March 1998 / Accepted in revised form: 6 July 1998  相似文献   

18.
In experiments on the plasma heating and confinement in the GOL-3 multimirror trap, a deuterium plasma with a density of ~1015 cm?3 and an ion temperature of 1–2 keV is confined for more than 1 ms. The plasma is heated by a relativistic electron beam. The ion temperature, which was measured by independent methods, reached 1.5–2 keV after the beginning of the beam injection. Since such a fast ion heating cannot be explained by the classical energy transfer from electrons to ions through binary collisions, a theoretical model of collective energy transfer was proposed. In order to verify this model, a new diagnostics was designed to study the dynamics of neutron emission from an individual mirror cell of the multimirror trap during electron beam injection. Intense neutron bursts predicted by this model were detected experimentally. Periodic neutron flux modulation caused by the macroscopic plasma flow along the solenoid was observed. The revealed mechanism of fast ion heating can be used to achieve fusion temperatures in the multimirror trap.  相似文献   

19.
TILDA, a new Monte Carlo track structure code for ions in gaseous water that is valid for both high-LET (approximately 10(4) keV/microm) and low-LET ions, is presented. It is specially designed for a comparison of the patterns of energy deposited by a large range of ions. Low-LET ions are described in a perturbative frame, whereas heavy ions with a very high stopping power are treated using the Lindhard local density approximation and the Russek and Meli statistical method. Ionization cross sections singly differential with energy compare well with the experiment. As an illustration of the non-perturbative interaction of high-LET ions, a comparison between the ion tracks of light and heavy ions with the same specific energy is presented (1.4 MeV/nucleon helium and uranium ions). The mean energy for ejected electrons was found to be approximately four times larger for uranium than for helium, leading to a much larger track radius in the first case. For electrons, except for the excitation cross sections that are deduced from experimental fits, cross sections are derived analytically. For any orientation of the target molecule, the code calculates multiple differential cross sections as a function of the ejection and scattering angles and of the energy transfer. The corresponding singly differential and total ionization cross sections are in good agreement with experimental data. The angular distribution of secondary electrons is shown to depend strongly on the orientation of the water molecule.  相似文献   

20.
Current approaches to 3D imaging at subcellular resolution using confocal microscopy and electron tomography, while powerful, are limited to relatively thin and transparent specimens. Here we report on the use of a new generation of dual beam electron microscopes capable of site-specific imaging of the interior of cellular and tissue specimens at spatial resolutions about an order of magnitude better than those currently achieved with optical microscopy. The principle of imaging is based on using a focused ion beam to create a cut at a designated site in the specimen, followed by viewing the newly generated surface with a scanning electron beam. Iteration of these two steps several times thus results in the generation of a series of surface maps of the specimen at regularly spaced intervals, which can be converted into a three-dimensional map of the specimen. We have explored the potential of this sequential "slice-and-view" strategy for site-specific 3D imaging of frozen yeast cells and tumor tissue, and establish that this approach can identify the locations of intracellular features such as the 100 nm-wide yeast nuclear pore complex. We also show that 200 nm thick sections can be generated in situ by "milling" of resin-embedded specimens using the ion beam, providing a valuable alternative to manual sectioning of cells and tissues using an ultramicrotome. Our results demonstrate that dual beam imaging is a powerful new tool for cellular and subcellular imaging in 3D for both basic biomedical and clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号