首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
骨骼肌内质网Ca2+泵转运Ca2+的结构基础   总被引:1,自引:0,他引:1  
Ca2 泵(Ca2 -ATPase)是调节细胞内Ca2 浓度的重要蛋白质之一.Ca2 泵在转运Ca2 的过程中经历一系列构象变化.其中,E1状态为外向的Ca2 高亲和状态,E2状态则为内向的Ca2 低亲和状态.目前,骨骼肌内质网Ca2 泵转运Ca2 过程中的几个中间状态,包括E1-2Ca2 ,E1-ATP,E1-P-ADP,E2-Pi和E2状态的三维晶体结构已经解析.介绍这几种状态的晶体结构,并分析Ca2 泵在执行功能过程中结构与功能的关系.  相似文献   

2.
林建军  魏幼璋 《植物学报》2001,18(2):190-196
本文对植物体细胞Ca2+-ATPase的类型、亚细胞定位、生化特性、分子量差异、基因克隆、酶活性调节剂以及生理功能等方面的研究进展进行综述和讨论。  相似文献   

3.
Energy metabolism and Ca2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca2+ transients, suggesting that myofilament sensitivity to Ca2+ increased. Interestingly, the decay kinetics of global Ca2+ transients and Ca2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2a), but not Na+/Ca2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca2+ homeostasis, because SR Ca2+ load and the propensity for Ca2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.  相似文献   

4.
苹果果肉质膜微囊主动运输Ca2+的Ca2+-ATP酶特性   总被引:1,自引:0,他引:1  
应用45Ca2 + 示踪法研究了苹果果肉质膜微囊依赖于Ca2+ 的ATP 酶(Ca2+ATP酶)活性与Ca2+ 运输之间的关系及激素对该酶活性的影响。结果表明:Ca2 +ATP 酶存在于质膜上并受载体A23187 刺激而活性增加,该酶活性与依赖于ATP 的Ca2 + 运输依抑制剂EB、游离Ca2+ 和ATP浓度的变化并呈极为相似的饱和动力学特征;而其EB 半抑制浓度,Ca2+ 和ATP 半饱和浓度分别为0 .1 ,0 .1 和50 μmol/L,从而证实了正是Ca2+ATP酶推动苹果果肉质膜微囊的Ca2+ 的主动运输。生长素与萘乙酸均可促进苹果果肉质膜微囊Ca2+ATP酶活性和Ca2+ 吸收,而赤霉素则无此作用。  相似文献   

5.
Kim S  Rhim H 《Molecules and cells》2011,32(3):289-294
Overload of intracellular Ca2+ has been implicated in the pathogenesis of neuronal disorders, such as Alzheimer’s disease. Various mechanisms produce abnormalities in intracellular Ca2+ homeostasis systems. L-type Ca2+ channels have been known to be closely involved in the mechanisms underlying the neurodegenerative properties of amyloid-β (Aβ) peptides. However, most studies of L-type Ca2+ channels in Aβ-related mechanisms have been limited to CaV1.2, and surprisingly little is known about the involvement of CaV1.3 in Aβ-induced neuronal toxicity. In the present study, we examined the expression patterns of CaV1.3 after Aβ25–35 exposure for 24 h and compared them with the expression patterns of CaV1.2. The expression levels of CaV1.3 were not significantly changed by Aβ25–35 at both the mRNA levels and the total protein level in cultured hippocampal neurons. However, surface protein levels of CaV1.3 were significantly increased by Aβ25–35, but not by Aβ35–25. We next found that acute treatment with Aβ25–35 increased CaV1.3 channel activities in HEK293 cells using whole-cell patch-clamp recordings. Furthermore, using GTP pulldown and co-immunoprecipitation assays in HEK293 cell lysates, we found that amyloid precursor protein interacts with β3 subunits of Ca2+ channels instead of CaV1.2 or CaV1.3 α1 subunits. These results show that Aβ25–35 chronically or acutely upregulates CaV1.3 in the rat hippocampal and human kidney cells (HEK293). This suggests that CaV1.3 has a potential role along with CaV1.2 in the pathogenesis of Alzheimer’s disease.  相似文献   

6.
Classical NaCa exchange models are based on a symmetric carrier system where Na and Ca competing from the same site, can produce net movement of the other against its electrochemical gradient. We have explored this symmetric assumption by studying the Cao and Nao-dependent Na efflux in dialyzed squid axons in which proper control of both external and internal medium was achieved. The results show: (1) In axons dialyzed without Cai and ATP, Cao-dependent Na efflux cannot be detected even in the absence of Nao. Under these conditions, the level of Na efflux (1 pmol · cm−2 · s−1) is close to that predicted by an electrical ‘leak’. (2) In axons dialyzed with Cai (100 μM) and without ATP, Na efflux measured in 440 mM Nao, is about 4–5 pmol · cm−2 · s−1 and rather insensitive to Cao between 0 and 10 mM. However, in the absence of Nao, a Cao-dependent Na efflux is observed similar in magnitude to that found in the presence of external Na. (3) In the presence of both Cai and ATP, Na efflux into artificial sea-water (440 mM Na, 10 mM Ca) is 18 pmol · cm−2 · s−1. In the absence of Nao the efflux of Na is 7.5 pmol · cm−2 · s−1. In the absence of both Nao and Cao the efflux is close to ‘leak’. With full Nao but no Cao, the Na efflux average 12.6 pmol · cm−2 · s−1. These results indicate a marked asymmetry in the modus operandi of the NaCa exchange system with respect to Cai and ATP. These two substrates are required from the cis side to promote Cao-dependent Na efflux (reversal NaCa exchange).  相似文献   

7.
Ca2+和突触细胞融合   总被引:1,自引:0,他引:1  
神经突触传递对于神经系统功能的实现具有十分重要的意义,而神经突触传递涉及到突触囊泡膜和突触前膜的融合,3种膜蛋白SNARE特异性识别并形成复合物,从而介导了神经递质的释放。Ca^2 通过其感受器突触结合蛋白而调节了突触细胞的融合过程,也最终影响了神经元的胞吐作用。  相似文献   

8.
Ca2 是促发囊泡胞吐的关键调节因子.最近的研究表明,分泌囊泡和通道之间的空间距离调节囊泡分泌的过程和性质.Ca2 通道开口附近形成的Ca2 微区和Ca2 钠区和囊泡快速递质释放有非常紧密的联系.SNARE蛋白和钙离子传感器synaptotagmins等在触发分泌中起调控作用.同时另有一类不依赖于Ca2 的囊泡分泌存在.Latrotoxin和mastoparan等可以激活这一类不依赖于Ca2 的信号通路,从而触发囊泡释放.本文主要从ca2 对囊泡胞吐的调控作用着手,综述了Ca2 依赖和Ca2 不依赖的囊泡分泌过程和可能的调控机制.  相似文献   

9.
Acute activation of calcium/calmodulin-dependent protein kinase (CaMKII) in permeabilized phospholamban knockout (PLN-KO) mouse myocytes phosphorylates ryanodine receptors (RyRs) and activates spontaneous local sarcoplasmic reticulum (SR) Ca release events (Ca sparks) even at constant SR Ca load. To assess how CaMKII regulates SR Ca release in intact myocytes (independent of SR Ca content changes or PLN effects), we compared Ca sparks in PLN-KO versus mice, which also have transgenic cardiac overexpression of CaMKIIδC in the PLN-KO background (KO/TG). Compared with PLN-KO mice, these KO/TG cardiomyocytes exhibited 1), increased twitch Ca transient and fractional release (both by ~35%), but unaltered SR Ca load; 2), increased resting Ca spark frequency (300%) despite a lower diastolic [Ca]i, which also slowed twitch [Ca]i decline (suggesting CaMKII-dependent RyR Ca sensitization); 3), elevated Ca spark amplitude and rate of Ca release (which might indicate that more RyR channels participate in a single spark); 4), prolonged Ca spark rise time (which implies that CaMKII either delays RyR closure or prolongs the time when openings can occur); 5), more frequent repetitive sparks at single release sites. Analysis of repetitive sparks from individual Ca release sites indicates that CaMKII enhanced RyR Ca sensitivity, but did not change the time course of SR Ca refilling. These results demonstrate that there are dramatic CaMKII-mediated effects on RyR Ca release that occur via regulation of both RyR activation and termination processes.  相似文献   

10.
拟除虫菊酯对家蝇Ca—ATPase和Ca—Mg—ATPase的抑制作用   总被引:6,自引:4,他引:2  
通过对家蝇神经系统的Ca-ATPase、Ca-Mg-ATPase性质的研究,表明Ca-ATPase、Ca-Mg-AT-Pase反应的适宜pH值分别为7.0-8.5和6.5。适温皆为35-40℃;底物(ATP)最适浓度均为0.5mmol/L。比较测定了家蝇三个品系中两种ATPase的活性及拟除虫菊酯对该酶的抑制作用,实验证明,敏感与Del-R、2Cl-R品系间Ca-ATPase、Ca-Mg-ATPase活力无明显的差异。溴氰菊酯、氯菊酯可部分地抑制敏感品系家蝇Ca-ATPase活性,而对拟除虫菊酯抗性品系Ca-ATPase无抑制作用,从而证明,Del-R、2Cl-B品系Ca-ATPase对拟除虫菊酯的敏感性已明显降低,这可能能是击倒抗性机制之一。实验还表明,拟除虫菊酯对Ca-Mg-ATPase基本上无抑制作用,这说明在家蝇中,Ca-Mg-ATPase并不是拟除虫菊酯的一个靶标位点。  相似文献   

11.
Store-operated channels (SOC) are Ca(2+)-permeable channels that are activated by IP(3)-receptor-mediated Ca(2+) depletion of the endoplasmic reticulum (ER). Recent studies identify a membrane pore subunits, Orai1 and a Ca(2+) sensor on ER, STIM1 as components of Ca(2+) release-activated Ca(2+) (CRAC) channels, which are well-characterized SOCs. On the other hand, proteins that act as modulators of SOC activity remain to be identified. Calumin is a Ca(2+)-binding protein that resides on the ER and functional experiments using calumin-null mice demonstrate that it is involved in SOC function, although its role is unknown. This study used electrophysiological analysis to explore whether calumin modulates CRAC channel activity. CRAC channel currents were absent in HEK293 cells co-expressing calumin with the CRAC channel components, Orai1 or STIM1. Meanwhile, HEK cells that co-expressed calumin with CRAC channels exhibited larger currents with slower inactivation than cells expressing CRAC channels alone. The current-voltage relationship showed an inwardly rectifying current, but a negative shift in the reversal potential of greater than 60mV was observed in HEK cells co-expressing calumin with CRAC channels. In addition, the permeability coefficient ratio of Ca(2+) over monovalent cations was much lower than that of cells expressing CRAC channels alone. Replacement of Na(+) with N-methyl-d-glucamine(+) in the external solution noticeably diminished the CRAC current in HEK cells co-expressing calumin and CRAC channels. In a Cs(+)-based external solution, CRAC current was not observed in either cell-type. In addition, Ca(2+) imaging analysis revealed that co-transfection of calumin reduced extracellular Ca(2+) influx via CRAC channels. Further, calumin was shown to be directly associated with CRAC channels. These results reveal a novel mechanism for the regulation of CRAC channels by calumin.  相似文献   

12.
Alzheimer disease (AD), the leading cause of dementia, is characterized by the accumulation of β-amyloid peptides (Aβ) in senile plaques in the brains of affected patients. Many cellular mechanisms are thought to play important roles in the development and progression of AD. Several lines of evidence point to the dysregulation of Ca2+ homeostasis as underlying aspects of AD pathogenesis. Moreover, direct roles in the regulation of Ca2+ homeostasis have been demonstrated for proteins encoded by familial AD-linked genes such as PSEN1, PSEN2, and APP, as well as Aβ peptides. Whereas these studies support the hypothesis that disruption of Ca2+ homeostasis contributes to AD, it is difficult to disentangle the effects of familial AD-linked genes on Aβ production from their effects on Ca2+ homeostasis. Here, we developed a system in which cellular Ca2+ homeostasis could be directly manipulated to study the effects on amyloid precursor protein metabolism and Aβ production. We overexpressed stromal interaction molecule 1 (STIM1) and Orai1, the components of the store-operated Ca2+ entry pathway, to generate cells with constitutive and store depletion-induced Ca2+ entry. We found striking effects of Ca2+ entry induced by overexpression of the constitutively active STIM1D76A mutant on amyloid precursor protein metabolism. Specifically, constitutive activation of Ca2+ entry by expression of STIM1D76A significantly reduced Aβ secretion. Our results suggest that disruptions in Ca2+ homeostasis may influence AD pathogenesis directly through the modulation of Aβ production.  相似文献   

13.
14.
FCDI (fast Ca2?-dependent inactivation) is a mechanism that limits Ca2? entry through Ca2? channels, including CRAC (Ca2? release-activated Ca2?) channels. This phenomenon occurs when the Ca2? concentration rises beyond a certain level in the vicinity of the intracellular mouth of the channel pore. In CRAC channels, several regions of the pore-forming protein Orai1, and STIM1 (stromal interaction molecule 1), the sarcoplasmic/endoplasmic reticulum Ca2? sensor that communicates the Ca2? load of the intracellular stores to Orai1, have been shown to regulate fast Ca2?-dependent inactivation. Although significant advances in unravelling the mechanisms of CRAC channel gating have occurred, the mechanisms regulating fast Ca2?-dependent inactivation in this channel are not well understood. We have identified that a pore mutation, E106D Orai1, changes the kinetics and voltage dependence of the ICRAC (CRAC current), and the selectivity of the Ca2?-binding site that regulates fast Ca2?-dependent inactivation, whereas the V102I and E190Q mutants when expressed at appropriate ratios with STIM1 have fast Ca2?-dependent inactivation similar to that of WT (wild-type) Orai1. Unexpectedly, the E106D mutation also changes the pH dependence of ICRAC. Unlike WT ICRAC, E106D-mediated current is not inhibited at low pH, but instead the block of Na? permeation through the E106D Orai1 pore by Ca2? is diminished. These results suggest that Glu1?? inside the CRAC channel pore is involved in co-ordinating the Ca2?-binding site that mediates fast Ca2?-dependent inactivation.  相似文献   

15.
In sinoatrial node cells of the heart, beating rate is controlled, in part, by local Ca2(+) releases (LCRs) from the sarcoplasmic reticulum, which couple to the action potential via electrogenic Na(+)/Ca2(+) exchange. We observed persisting, roughly periodic LCRs in depolarized rabbit sinoatrial node cells (SANCs). The features of these LCRs were reproduced by a numerical model consisting of a two-dimensional array of stochastic, diffusively coupled Ca2(+) release units (CRUs) with fixed refractory period. Because previous experimental studies showed that β-adrenergic receptor stimulation increases the rate of Ca2(+) release through each CRU (dubbed I(spark)), we explored the link between LCRs and I(spark) in our model. Increasing the CRU release current I(spark) facilitated Ca2(+)-induced-Ca2(+) release and local recruitment of neighboring CRUs to fire more synchronously. This resulted in a progression in simulated LCR size (from sparks to wavelets to global waves), LCR rhythmicity, and decrease of LCR period that parallels the changes observed experimentally with β-adrenergic receptor stimulation. The transition in LCR characteristics was steeply nonlinear over a narrow range of I(spark), resembling a phase transition. We conclude that the (partial) periodicity and rate regulation of the "Calcium clock" in SANCs are emergent properties of the diffusive coupling of an ensemble of interacting stochastic CRUs. The variation in LCR period and size with I(spark) is sufficient to account for β-adrenergic regulation of SANC beating rate.  相似文献   

16.
It was recently suggested that the opening of neutrophil plasma membrane Ca2+ channels by chemotactic agents is mediated by a rise in free cytosolic Ca2+ concentration ([Ca2+]i). This hypothesis was tested in human cells monitoring [Ca2+]i with the indicator indo-1. In cells loaded with the Ca2+-chelating agent bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetate, transmembrane Ca2+ uptake could be stimulated by formyl-methionyl-leucyl-phenylalanine (fMLP) even when [Ca2+]i was at or below the resting level. In contrast, simply elevating [Ca2+]i in unstimulated cells failed to increase transmembrane uptake. It was concluded either that Ca2+ uptake across the plasma membrane is activated directly by the formation of the chemotactic factor-receptor complex or, more likely, that a transduction mechanism distinct from changes in [Ca2+]i is involved.  相似文献   

17.
18.
《Inorganica chimica acta》1988,152(4):257-260
By using a conventional FT NMR spectrometer and probe, we first detected 43Ca NMR spectra of the Ca2+ (2.9 mM): calmodulin (0.725 mM) (1:1 per binding site) complex in 0.15 M N-2-hydroxyethylpiperazine N′-2-ethanesulfonic acid (HEPES)–K+ buffer (pH 7.2). The half-band width of the complex was nearly 160 Hz and the signal of the complex was located at the 2.13 ppm (43 Hz) lower field from that of the free Ca2+ ion. By adding trifluoperazine, melittin, substance P or glucagon, the half-band widths of the Ca2+–calmodulin complex (1:1 per binding site) were remarkably reduced and the chemical shifts of the complex moved back to the upper field. It is suggested that the Ca2+ ion may bind to Ca2+ low-affinity sites more tightly in the presence of those effectors than in their absence.  相似文献   

19.
Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H(2)O(2); 200 μM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of I(Ca,L), Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H(2)O(2) model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of I(Ca,L) may act synergistically in either case, reactivation of I(Ca,L) plays a predominant role in EAD genesis under oxidative stress (H(2)O(2) model), while spontaneous CaWs are a predominant cause for EADs under Ca(2+) overload condition (Iso + BayK model).  相似文献   

20.
Adenosine-to-inosine RNA editing is crucial for generating molecular diversity, and serves to regulate protein function through recoding of genomic information. Here, we discover editing within Ca(v)1.3 Ca2? channels, renown for low-voltage Ca2?-influx and neuronal pacemaking. Significantly, editing occurs within the channel's IQ domain, a calmodulin-binding site mediating inhibitory Ca2?-feedback (CDI) on channels. The editing turns out to require RNA adenosine deaminase ADAR2, whose variable activity could underlie a spatially diverse pattern of Ca(v)1.3 editing seen across the brain. Edited Ca(v)1.3 protein is detected both in brain tissue and within the surface membrane of primary neurons. Functionally, edited Ca(v)1.3 channels exhibit strong reduction of CDI; in particular, neurons within the suprachiasmatic nucleus show diminished CDI, with higher frequencies of repetitive action-potential and calcium-spike activity, in wild-type versus ADAR2 knockout mice. Our study reveals a mechanism for fine-tuning Ca(v)1.3 channel properties in CNS, which likely impacts a broad spectrum of neurobiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号