首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using an established corneal stromal cell differentiation model, we manipulated alpha-smooth muscle actin (alpha-SMA) protein expression levels in fibroblasts by treating them with TGF-beta1, bFGF, TGF-beta type I receptor inhibitor (SB-431542), and siRNA against alpha-SMA. The corresponding cell traction forces (CTFs) were determined by cell traction force microscopy. With all these treatments, we found that alpha-SMA is not required for CTF induction, but its expression upregulates CTF. This upregulation involves the modification of stress fibers but does not appear to relate to non-muscle myosin II expression or beta-actin expression. Moreover, there exists a linear relationship between alpha-SMA protein expression level and CTF magnitude. Finally, CTFs were found to vary among a population of myofibroblasts, suggesting that alpha-SMA protein expression levels of individual cells also vary.  相似文献   

2.
Tissue engineering science: Consequences of cell traction force   总被引:3,自引:0,他引:3  
Blood and tissue cells mechanically interact with soft tissues and tissue-equivalent reconstituted collagen gels in a variety of situations relevant to biomedicine and biotechnology. A key phenomenon in these interactions is the exertion of traction force by cells on local collagen fibers which typically constitute the solid network of these tissues and gels and impart gross mechanical integrity. Two important consequences of cells exerting traction on such collagen networks are first, when the cells co-ordinate their traction, resulting in cell migration, and second, when their traction is sufficient to deform the network. Such cell-collagen network interactions are coupled in a number of ways. Network deformation, for example, can result in net alignment of collagen fibers, eliciting contact guidance, wherein cells move with bidirectional bias along an axis of fiber alignment, potentially leading to a nonuniform cell distribution. This may govern cell accumulation in wounds and be exploited to control cell infiltration of bioartificial tissues and organs. Another consequence of cell traction is the resultant stress and strain in the network which modulate cell protein and DNA synthesis and differentiation. We summarize, here, relevant mathematical theories which we have used to describe the inherent coupling of cell dynamics and tissue mechanics in cell-populated collagen gels via traction. The development of appropriate models based on these theories, in an effort to understand how events in wound healing govern the rate and extent of wound contraction, and to measure cell traction forces in vitro, are described. Relevant observations and speculation from cell biology and medicine that motivate or serve to critique the assumptions made in the theories and models are also summarized.Abbreviations ECM Extracellular Matrix - FPCL Fibroblast-Populated Collagen Lattice - FPCM Fibroblast-Populated Collagen Microsphere  相似文献   

3.
4.
Cell-cell adhesion mediated by specific cell-surface molecules is essential for multicellular development. Here we quantify de-adhesion forces at the resolution of individual cell-adhesion molecules, by controlling the interactions between single cells and combining single-molecule force spectroscopy with genetic manipulation. Our measurements are focused on a glycoprotein, contact site A (csA), as a prototype of cell-adhesion proteins. csA is expressed in aggregating cells of Dictyostelium discoideum, which are engaged in development of a multicellular organism. Adhesion between two adjacent cell surfaces involves discrete interactions characterized by an unbinding force of 23 +/- 8 pN, measured at a rupture rate of 2.5 +/- 0.5 microm s-1.  相似文献   

5.
Keratinocyte traction forces play a crucial role in wound healing. The aim of this study was to develop a novel cell traction force (CTF) transducer system based on cholesteryl ester liquid crystals (LC). Keratinocytes cultured on LC induced linear and isolated deformation lines in the LC surface. As suggested by the fluorescence staining, the deformation lines appeared to correlate with the forces generated by the contraction of circumferential actin filaments which were transmitted to the LC surface via the focal adhesions. Due to the linear viscoelastic behavior of the LC, Hooke's equation was used to quantify the CTFs by associating Young's modulus of LC to the cell induced stresses and biaxial strain in forming the LC deformation. Young's modulus of the LC was profiled by using spherical indentation and determined at approximately 87.1±17.2kPa. A new technique involving cytochalasin-B treatment was used to disrupt the intracellular force generating actin fibers, and consequently the biaxial strain in the LC induced by the cells was determined. Due to the improved sensitivity and spatial resolution (~1μm) of the LC based CTF transducer, a wide range of CTFs was determined (10-120nN). These were found to be linearly proportional to the length of the deformations. The linear relationship of CTF-deformations was then applied in a bespoke CTF mapping software to estimate CTFs and to map CTF fields. The generated CTF map highlighted distinct distributions and different magnitude of CTFs were revealed for polarized and non-polarized keratinocytes.  相似文献   

6.
The migration of vascular endothelial cells in vivo occurs in a fluid dynamic environment due to blood flow, but the role of hemodynamic forces in cell migration is not yet completely understood. Here we investigated the effect of shear stress, the frictional drag of blood flowing over the cell surface, on the migration speed of individual endothelial cells on fibronectin-coated surfaces, as well as the biochemical and biophysical bases underlying this shear effect. Under static conditions, cell migration speed had a bell-shaped relationship with fibronectin concentration. Shear stress significantly increased the migration speed at all fibronectin concentrations tested and shifted the bell-shaped curve upwards. Shear stress also induced the activation of Rho GTPase and increased the traction force exerted by endothelial cells on the underlying substrate, both at the leading edge and the rear, suggesting that shear stress enhances both the frontal forward-pulling force and tail retraction. The inhibition of a Rho-associated kinase, p160ROCK, decreased the traction force and migration speed under both static and shear conditions and eliminated the shear-enhancement of migration speed. Our results indicate that shear stress enhances the migration speed of endothelial cells by modulating the biophysical force of tractions through the biochemical pathway of Rho-p160ROCK.  相似文献   

7.
Biomechanics and Modeling in Mechanobiology - Altered vascular smooth muscle cell (VSMC) contractility is both a response to and a driver for impaired arterial function, and the leading...  相似文献   

8.
Chemotaxing Dictyostelium discoideum cells adapt their morphology and migration speed in response to intrinsic and extrinsic cues. Using Fourier traction force microscopy, we measured the spatiotemporal evolution of shape and traction stresses and constructed traction tension kymographs to analyze cell motility as a function of the dynamics of the cell’s mechanically active traction adhesions. We show that wild-type cells migrate in a step-wise fashion, mainly forming stationary traction adhesions along their anterior–posterior axes and exerting strong contractile axial forces. We demonstrate that lateral forces are also important for motility, especially for migration on highly adhesive substrates. Analysis of two mutant strains lacking distinct actin cross-linkers (mhcA and abp120 cells) on normal and highly adhesive substrates supports a key role for lateral contractions in amoeboid cell motility, whereas the differences in their traction adhesion dynamics suggest that these two strains use distinct mechanisms to achieve migration. Finally, we provide evidence that the above patterns of migration may be conserved in mammalian amoeboid cells.  相似文献   

9.
In this work, we present a ridged, microfabricated, force sensor that can be used to investigate mechanical interactions between cells exhibiting contact guidance and the underlying cell culture substrate, and a proof-of-function evaluation of the force sensor performance. The substrates contain arrays of vertical pillars between solid ridges that were microfabricated in silicon wafers using photolithography and deep reactive ion etching. The spring constant of the pillars was measured by atomic force microscopy. For time-lapse experiments, cells were seeded on the pillared substrates and cultured in an on-stage incubator on a microscope equipped with reflected differential interference contrast optics. Endothelial cells (ECs) and fibroblasts were observed during attachment, spreading, and migration. Custom image analysis software was developed to resolve cell borders, cell alignment to the pillars and migration, displacements of individual pillars, and to quantify cell traction forces. Contact guidance classification was based on cell alignment and movement angles with respect to microfabricated ridges, as well as cell elongation. In initial investigations made with the ridged cell force sensor, we have observed contact guidance in ECs but not in fibroblast cells. A difference in maximal amplitude of mechanical forces was observed between a contact-guided and non-contact-guided, but mobile, EC. However, further experiments are required to determine the statistical significance of this observation. By chance, we observed another feature of cell behavior, namely a reversion of cell force direction. The direction of forces measured under rounded fibroblast cells changed from outwards during early cell attachment to inwards during further observation of the spreading phase. The range of forces measured under fibroblasts (up to 138 nN) was greater than that measured in EC (up to 57 nN), showing that the rigid silicon sensor is capable of resolving a large range of forces, and hence detection of differences in traction forces between cell types. These observations indicate proof-of-function of the ridged cell force sensor to induce contact guidance, and that the pillared cell force sensor constructed in rigid silicon has the necessary sensitivity to detect differences in traction force vectors between different cell phenotypes and morphologies.  相似文献   

10.
Traction force microscopy (TFM) is commonly used to estimate cells' traction forces from the deformation that they cause on their substrate. The accuracy of TFM highly depends on the computational methods used to measure the deformation of the substrate and estimate the forces, and also on the specifics of the experimental set-up. Computer simulations can be used to evaluate the effect of both the computational methods and the experimental set-up without the need to perform numerous experiments. Here, we present one such TFM simulator that addresses several limitations of the existing ones. As a proof of principle, we recreate a TFM experimental set-up, and apply a classic 2D TFM algorithm to recover the forces. In summary, our simulator provides a valuable tool to study the performance, refine experimentally, and guide the extraction of biological conclusions from TFM experiments.  相似文献   

11.
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.  相似文献   

12.
Cell traction force and measurement methods   总被引:2,自引:0,他引:2  
Cell traction forces (CTFs) are crucial to many biological processes such as inflammation, wound healing, angiogenesis, and metastasis. CTFs are generated by actomyosin interactions and actin polymerization and regulated by intracellular proteins such as alpha-smooth muscle actin (α-SMA) and soluble factors such as transforming growth factor-β (TGF-β). Once transmitted to the extracellular matrix (ECM) through stress fibers via focal adhesions, which are assemblies of ECM proteins, transmembrane receptors, and cytoplasmic structural and signaling proteins (e.g., integrins), CTFs direct many cellular functions, including cell migration, ECM organization, and mechanical signal generation. Various methods have been developed over the years to measure CTFs of both populations of cells and of single cells. At present, cell traction force microscopy (CTFM) is among the most efficient and reliable method for determining CTF field of an entire cell spreading on a two-dimensional (2D) substrate surface. There are currently three CTFM methods, each of which is unique in both how displacement field is extracted from images and how CTFs are subsequently estimated. A detailed review and comparison of these methods are presented. Future research should improve CTFM methods such that they can automatically track dynamic CTFs, thereby providing new insights into cell motility in response to altered biological conditions. In addition, research effort should be devoted to developing novel experimental and theoretical methods for determining CTFs in three-dimensional (3D) matrix, which better reflects physiological conditions than 2D substrate used in current CTFM methods.  相似文献   

13.
14.
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte‐like fan‐shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan‐shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.  相似文献   

15.
To control their attachment to substrates and other cells, cells regulate their adhesion receptors. One regulatory process is receptor crosstalk, where the binding of one type of cell adhesion molecule influences the activity of another type. To identify such crosstalk and gain insight into their mechanisms, we developed the stimulated single‐cell force spectroscopy assay. In this assay, the influence of a cells adhesion to one substrate on the strength of its adhesion to a second substrate is examined. The assay quantifies the adhesion of the cell and the contributions of specific adhesion receptors. This allows mechanisms by which the adhesion is regulated to be determined. Using the assay we identified crosstalk between collagen‐binding integrin α1β1 and fibronectin‐binding integrin α5β1 in HeLa cells. This crosstalk was unidirectional, from integrin α1β1 to integrin α5β1, and functioned by regulating the endocytosis of integrin α5β1. The single‐cell assay should be expandable for the screening and quantification of crosstalk between various cell adhesion molecules and other cell surface receptors.  相似文献   

16.
Cell traction forces (CTFs) are critical for cell motility and cell shape maintenance. As such, they play a fundamental role in many biological processes such as angiogenesis, embryogenesis, inflammation, and wound healing. To determine CTFs at the sub-cellular level with high sensitivity, we have developed high density micropost force sensor array (MFSA), which consists of an array of vertically standing poly(dimethylsiloxane) (PDMS) microposts, 2 microm in diameter and 6 microm in height, with a center-to-center distance of 4 microm. In combination with new image analysis algorithms, the MFSA can achieve a spatial resolution of 40 nm and a force sensitivity of 0.5 nN. Culture experiments with various types of cells showed that this MFSA technology can effectively determine CTFs of cells with different sizes and traction force magnitudes.  相似文献   

17.
A three-dimensional tissue was fabricated by layering cell sheets with centrifugation. In this system, an optimal centrifugal force promoted the adhesion between (a) a cell sheet and a culture dish, and (b) layered cell sheets, resulting in a significant decrease in the fabrication time of the tissue. However, negative effects like sliding/significant deformation of cell sheets were observed upon high rotational speed use. These negative effects inhibit the further shortening of the fabrication time. The sliding/deformation suggests that the centrifugal forces were applied on the cell sheets in unwanted directions. Studies on the force vector field applied to the object placed on the plate during centrifugation are not available, and thus, the reason for the occurrence of such negative effects is unclear. Here, we theoretically derived the spatial distribution of acceleration applied on a plate during centrifugation. Using this theory, we found that the negative effects were triggered by the centrifugal force in the direction parallel to the plate surface, which appeared due to an inclination of the plate surface against a horizontal plane. Therefore, by adding weights on the plate edge to maintain the plate surface in a horizontal position, we succeeded in eliminating the negative effects and in increasing the rotational speed, with the minimum risk of sliding/deformation of cell sheets. We succeeded in reducing the time to establish tight adhesion between a mouse myoblast sheet and a culture dish, and layered cell sheets by increasing the centrifugal force from 5 min to 1 min without significant cytotoxicity.  相似文献   

18.
Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.  相似文献   

19.
Early Metazoans had to evolve the first cell adhesion system addressed to maintaining stable interactions between cells constituting different individuals. As the oldest extant multicellular animals, sponges are good candidates to have remnants of the molecules responsible for that crucial innovation. Sponge cells associate in a species-specific process through multivalent calcium-dependent interactions of carbohydrate structures on an extracellular membrane-bound proteoglycan termed aggregation factor. Single-molecule force spectroscopy studies of the mechanics of aggregation factor self-binding indicate the existence of intermolecular carbohydrate adhesion domains. A 200-kDa aggregation factor glycan (g200) involved in cell adhesion exhibits interindividual differences in size and epitope content which suggest the existence of allelic variants. We have purified two of these g200 distinct forms from two individuals of the same sponge species. Comparison of allotypic versus isotypic g200 binding forces reveals significant differences. Surface plasmon resonance measurements show that g200 self-adhesion is much stronger than its binding to other unrelated glycans such as chondroitin sulfate. This adhesive specificity through multiple carbohydrate binding domains is a type of cooperative interaction that can contribute to explain some functions of modular proteoglycans in general. From our results it can be deduced that the binding strength/surface area between two aggregation factor molecules is comparable with that of focal contacts in vertebrate cells, indicating that strong carbohydrate-based cell adhesions evolved at the very start of Metazoan history.  相似文献   

20.
The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号