首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical force plays an important role in the physiology of eukaryotic cells whose dominant structural constituent is the actin cytoskeleton composed mainly of actin and actin crosslinking proteins (ACPs). Thus, knowledge of rheological properties of actin networks is crucial for understanding the mechanics and processes of cells. We used Brownian dynamics simulations to study the viscoelasticity of crosslinked actin networks. Two methods were employed, bulk rheology and segment-tracking rheology, where the former measures the stress in response to an applied shear strain, and the latter analyzes thermal fluctuations of individual actin segments of the network. It was demonstrated that the storage shear modulus (G′) increases more by the addition of ACPs that form orthogonal crosslinks than by those that form parallel bundles. In networks with orthogonal crosslinks, as crosslink density increases, the power law exponent of G′ as a function of the oscillation frequency decreases from 0.75, which reflects the transverse thermal motion of actin filaments, to near zero at low frequency. Under increasing prestrain, the network becomes more elastic, and three regimes of behavior are observed, each dominated by different mechanisms: bending of actin filaments, bending of ACPs, and at the highest prestrain tested (55%), stretching of actin filaments and ACPs. In the last case, only a small portion of actin filaments connected via highly stressed ACPs support the strain. We thus introduce the concept of a ‘supportive framework,’ as a subset of the full network, which is responsible for high elasticity. Notably, entropic effects due to thermal fluctuations appear to be important only at relatively low prestrains and when the average crosslinking distance is comparable to or greater than the persistence length of the filament. Taken together, our results suggest that viscoelasticity of the actin network is attributable to different mechanisms depending on the amount of prestrain.  相似文献   

2.
Cells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells.  相似文献   

3.
We have developed a three-dimensional random network model of the intracellular actin cytoskeleton and have used it to study the role of the cytoskeleton in mechanotransduction and nucleus deformation. We use the model to predict the deformation of the nucleus when mechanical stresses applied on the plasma membrane are propagated through the random cytoskeletal network to the nucleus membrane. We found that our results agree with previous experiments utilizing micropipette pulling. Therefore, we propose that stress propagation through the random cytoskeletal network can be a mechanism to effect nucleus deformation, without invoking any biochemical signaling activity. Using our model, we also predict how nucleus strain and its relative displacement within the cytosol vary with varying concentrations of actin filaments and actin-binding proteins. We find that nucleus strain varies in a sigmoidal manner with actin filament concentration, while there exists an optimal concentration of actin-binding proteins that maximize nucleus displacement. We provide a theoretical analysis for these nonlinearities in terms of the connectivity of the random cytoskeletal network. Finally, we discuss laser ablation experiments that can be performed to validate these results in order to advance our understanding of the role of the cytoskeleton in mechanotransduction.  相似文献   

4.
Biological materials can undergo large deformations and also show viscoelastic behaviour. One such material is the network of actin filaments found in biological cells, giving the cell much of its mechanical stiffness. A theory for predicting the relaxation behaviour of actin networks cross-linked with the cross-linker α-actinin is proposed. The constitutive model is based on a continuum approach involving a neo-Hookean material model, modified in terms of concentration of chemically activated cross-links. The chemical model builds on work done by Spiros (Doctoral thesis, University of British Columbia, Vancouver, Canada, 1998) and has been modified to respond to mechanical stress experienced by the network. The deformation is split into a viscous and elastic part, and a thermodynamically motivated rate equation is assigned for the evolution of viscous deformation. The model predictions were evaluated for stress relaxation tests at different levels of strain and found to be in good agreement with experimental results for actin networks cross-linked with α-actinin.  相似文献   

5.
Cell motility is spatiotemporally regulated by interactions among mechanical and biochemical factors involved in the regulation of cytoskeletal actin structure reorganization. Although the molecular mechanisms underlying cell motility have been well investigated, the contributions of mechanical factors such as strain in the network reorganization remain unclear. In this study, we have quantitatively evaluated the strain field in the actin filament network forming the lamellipodia of migrating fish keratocytes to elucidate the mechanism by which actin filament network reorganization is regulated by biomechanical factors. The results highlight the existence of a negative (compressive) strain in the lamellipodia whose direction is parallel to that of cell movement. A close correlation was found between the distributions of the strain and the actin filament density in the lamellipodia, suggesting that negative strain may be involved in filament depolymerization. Based on this result, we propose a selective depolymerization model which suggests that negative strain may couple with biomechanical factors such as ADF/cofilin to promote selective depolymerization of filaments oriented in the direction of the deformation because such filaments experience relatively higher levels of the deformation. This model, in conjunction with others, may explain the observed reduction in filament density and the reorganization of actin filament network at the back of the lamellipodia of migrating fish keratocytes. Thus, we suggest that by coupling with biochemical factors, mechanical factors are involved in the regulation of actin filament depolymerization, thereby contributing to the regulation of cell motility.  相似文献   

6.
Force-induced deformation of tissues is transduced to the cytoskeletal (CSK) network within cells via focal adhesions. Previous studies have characterized transfer of strains of less than 15% from the substrate to the cell, using mitochondria as surrogate markers for CSK deformation. However, it is unclear if intracellular strains determined from mitochondrial displacement accurately reflect CSK network deformation. Furthermore, previous studies have not characterized substrate-CSK network strain transfer for strain magnitudes exceeding 15%, as can occur in vivo and in cell culture studies. Here, we developed and characterized a texture correlation algorithm to address the image distortion problem caused by large strain. We then used this algorithm to characterize large compressive strain (-40%) transfer from the substrate to the CSK in living cells, using fluorescently tagged actin to perform the tracking and both fluorescently tagged actin and talin to make validation measurements. With this approach, we were able to demonstrate explicitly that substrate strain transfers directly to CSK deformation in living cells undergoing large compressive deformation, and that the strain transfer ratios are independent of cell alignment. The tools and approaches developed here enable improved characterization of cell-matrix interactions under large deformation and in doing so, may reveal new insights into mechanotransduction mechanisms in such circumstances.  相似文献   

7.
Membrane deformation during endocytosis in yeast is driven by local, templated assembly of a sequence of proteins including polymerized actin and curvature-generating coat proteins such as clathrin. Actin polymerization is required for successful endocytosis, but it is not known by what mechanisms actin polymerization generates the required pulling forces. To address this issue, we develop a simulation method in which the actin network at the protein patch is modeled as an active gel. The deformation of the gel is treated using a finite-element approach. We explore the effects and interplay of three different types of force driving invagination: 1), forces perpendicular to the membrane, generated by differences between actin polymerization rates at the edge of the patch and those at the center; 2), the inherent curvature of the coat-protein layer; and 3), forces parallel to the membrane that buckle the coat protein layer, generated by an actomyosin contractile ring. We find that with optimistic estimates for the stall stress of actin gel growth and the shear modulus of the actin gel, actin polymerization can generate almost enough force to overcome the turgor pressure. In combination with the other mechanisms, actin polymerization can the force over the critical value.  相似文献   

8.
The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks.  相似文献   

9.
The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks.  相似文献   

10.
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model’s ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.  相似文献   

11.
Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression.  相似文献   

12.
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this ‘in silico’ actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model''s predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.  相似文献   

13.
Cross-linked actin networks are the primary component of the cell cytoskeleton and have been the subject of numerous experimental and modeling studies. While these studies have demonstrated that the networks are viscoelastic materials, evolving from elastic solids on short timescales to viscous fluids on long ones, questions remain about the duration of each asymptotic regime, the role of the surrounding fluid, and the behavior of the networks on intermediate timescales. Here we perform detailed simulations of passively cross-linked non-Brownian actin networks to quantify the principal timescales involved in the elastoviscous behavior, study the role of nonlocal hydrodynamic interactions, and parameterize continuum models from discrete stochastic simulations. To do this, we extend our recent computational framework for semiflexible filament suspensions, which is based on nonlocal slender body theory, to actin networks with dynamic cross linkers and finite filament lifetime. We introduce a model where the cross linkers are elastic springs with sticky ends stochastically binding to and unbinding from the elastic filaments, which randomly turn over at a characteristic rate. We show that, depending on the parameters, the network evolves to a steady state morphology that is either an isotropic actin mesh or a mesh with embedded actin bundles. For different degrees of bundling, we numerically apply small-amplitude oscillatory shear deformation to extract three timescales from networks of hundreds of filaments and cross linkers. We analyze the dependence of these timescales, which range from the order of hundredths of a second to the actin turnover time of several seconds, on the dynamic nature of the links, solvent viscosity, and filament bending stiffness. We show that the network is mostly elastic on the short time scale, with the elasticity coming mainly from the cross links, and viscous on the long time scale, with the effective viscosity originating primarily from stretching and breaking of the cross links. We show that the influence of nonlocal hydrodynamic interactions depends on the network morphology: for homogeneous meshworks, nonlocal hydrodynamics gives only a small correction to the viscous behavior, but for bundled networks it both hinders the formation of bundles and significantly lowers the resistance to shear once bundles are formed. We use our results to construct three-timescale generalized Maxwell models of the networks.  相似文献   

14.
Ion channel-toxin complexes are ideal systems for computational studies of protein-ligand interactions, because, in most cases, the channel axis provides a natural reaction coordinate for unbinding of a ligand and a wealth of physiological data is available to check the computational results. We use a recently determined structure of a potassium channel-charybdotoxin complex in molecular dynamics simulations to investigate the mechanism and energetics of unbinding. Pairs of residues on the channel protein and charybdotoxin that are involved in the binding are identified, and their behavior is traced during umbrella-sampling simulations as charybdotoxin is moved away from the binding site. The potential of mean force for the unbinding of charybdotoxin is constructed from the umbrella sampling simulations using the weighted histogram analysis method, and barriers observed are correlated with specific breaking of interactions and influx of water molecules into the binding site. Charybdotoxin is found to undergo conformational changes as a result of the reaction coordinate choice—a nontrivial decision for larger ligands—which we explore in detail, and for which we propose solutions. Agreement between the calculated and the experimental binding energies is obtained once the energetic consequences of these conformational changes are included in the calculations.  相似文献   

15.
The structural models created to understand the cytoskeletal mechanics of cells in suspension are described here. Suspended cells can be deformed by well-defined surface stresses in an Optical Stretcher [Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T.J., Cunningham, C.C., K?s, J., 2001. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81(2), 767-784], a two-beam optical trap designed for the contact-free deformation of cells. Suspended cells have a well-defined cytoskeleton, displaying a radially symmetric actin cortical network underlying the cell membrane with no actin stress fibers, and microtubules and intermediate filaments in the interior. Based on experimental data using suspended fibroblasts, we create two structural models: a thick shell actin cortex model that describes cell deformation for a localized stress distribution on these cells and a three-layered model that considers the entire cytoskeleton when a broad stress distribution is applied. Applying the models to data, we obtain a (actin) cortical shear moduli G of approximately 220 Pa for normal fibroblasts and approximately 185 Pa for malignantly transformed fibroblasts. Additionally, modeling the cortex as a transiently crosslinked isotropic actin network, we show that actin and its crosslinkers must be co-localized into a tight shell to achieve these cortical strengths. The similar moduli values and cortical actin and crosslinker densities but different deformabilities of the normal and cancerous cells suggest that a cell's structural strength is not solely determined by cytoskeletal composition but equally importantly by (actin) cytoskeletal architecture via differing cortical thicknesses. We also find that although the interior structural elements (microtubules, nucleus) contribute to the deformed cell's exact shape via their loose coupling to the cortex, it is the outer actin cortical shell (and its thickness) that mainly determines the cell's structural response.  相似文献   

16.
The unbinding of fluorescein from the single-chain Fv fragment of the 4D5Flu antibody is investigated by biased molecular dynamics with an implicit solvation model. To obtain statistically meaningful results, a large number of unbinding trajectories are calculated; they involve a total simulation time of more than 200 ns. Simulations are carried out with a time-dependent perturbation and in the presence of a constant force. The two techniques, which provide complementary information, induce unbinding by favoring an increase in the distance between the ligand and the antibody. This distance is an appropriate progress variable for the dissociation reaction and permits direct comparison of the unbinding forces in the simulations with data from atomic force microscopy (AFM). The time-dependent perturbation generates unfolding pathways that are close to equilibrium and can be used to reconstruct the mean force; i.e. the derivative of the potential of mean force, along the reaction coordinate. This is supported by an analysis of the overall unbinding profile and the magnitude of the mean force, which are similar to those of the unbinding force (i.e. the external force due to the time-dependent perturbation) averaged over several unbinding events.The multiple simulations show that unbinding proceeds along a rather well-defined pathway for a broad range of effective pulling speeds. Initially, there is a distortion of the protein localized in the C-terminal region followed by the fluorescein exit from the binding site. This occurs in steps that involve breaking of specific electrostatic and van der Waals interactions. It appears that the simulations do not explore the same barriers as those measured in the AFM experiments because of the much higher unfolding speed in the former. The dependence of the force on the logarithm of the loading rate is linear and the slope is higher than in the AFM, in agreement with experiment in other systems, where different slopes were observed for different regimes. Based on the unbinding events, mutations in the 4D5Flu antigen binding site are predicted to result in significant changes in the unbinding force.  相似文献   

17.
Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments.  相似文献   

18.
Acyl carrier protein (ACP) is a key component of the fatty acid synthesis pathways of both type I and type II synthesis systems. A large number of structure-function studies of various type II ACPs have been reported, but all are in vitro studies that assayed function or interaction of mutant ACPs with various enzymes of fatty acid synthesis or transfer. Hence in these studies functional properties of various mutant ACPs were assayed with only a subset of the many ACP-interacting proteins, which may not give an accurate overall view of the function of these proteins in vivo. This is especially so because Escherichia coli ACP has been reported to interact with several proteins that have no known roles in lipid metabolism. We therefore tested a large number of mutant derivatives of E. coli ACP carrying single amino acid substitutions for their abilities to restore growth to an E. coli strain carrying a temperature-sensitive mutation in acpP, the gene that encodes ACP. Many of these mutant proteins had previously been tested in vitro thus providing data for comparison with our results. We found that several mutant ACPs containing substitutions of ACP residues reported previously to be required for ACP function in vitro support normal growth of the acpP mutant strain. However, several mutant proteins reported to be severely defective in vitro failed to support growth of the acpP strain in vivo (or supported only weak growth). A collection of ACPs from diverse bacteria and from three eukaryotic organelles was also tested. All of the bacterial ACPs tested restored growth to the E. coli acpP mutant strain except those from two related bacteria, Enterococcus faecalis and Lactococcus lactis. Only one of the three eukaryotic organellar ACPs allowed growth. Strikingly the ACP is that of the apicoplast of Plasmodium falciparum (the protozoan that causes malaria). The fact that an ACP from a such diverse organism can replace AcpP function in E. coli suggests that some of the protein-protein interactions detected for AcpP may be not be essential for growth of E. coli.  相似文献   

19.
Modification of actin at Cys (374) with tetramethylrhodamine maleimide (TMR-actin) has been used for visualization of actin filaments and to produce high-resolution crystal structures of actin. We show that TMR-actin exhibits a 21% decrease in absorbance at 557 nm upon thermal unfolding, likely due to the movement of TMR to a more hydrophobic environment upon rapid unfolding and protein aggregation. We took advantage of this property to test models of actin protein unfolding. A transition temperature ( T m) of 60.2 +/- 0.2 degrees C for Ca (2+).ATP.TMR-actin was determined using A 557 and agreed with our own determinations employing different techniques and previous work with unlabeled actin. Our data show that the dependence of TMR-actin thermal stability on the bound nucleotide and cations follows a trend of Ca (2+).ATP > Mg (2+).ATP > Ca (2+).ADP > Mg (2+).ADP. The activation energies and frequency factors for the thermal unfolding of TMR-actin determined with two methods were in good agreement with those previously determined for unlabeled actin. We observed a biphasic trend in the T m of TMR-actin with increasing nucleotide concentrations, supporting a two-pathway model for actin protein unfolding where one pathway dominates at different concentrations of nucleotide. Additionally, TMR-actin bound by DNase I or gelsolin segment-1 exhibited elevated transition temperatures.  相似文献   

20.
α-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, α-actinin can retain conformation, function, and strength. α-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the α-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the α-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the α-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the α-actinin rod domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号