首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Annexins play critical roles in membrane organization, membrane trafficking and vesicle transport. The family members share the ability to bind to membranes with high affinities, but the interactions between annexins and membranes remain unclear. Here, using long‐time molecular dynamics simulations, we provide detailed information for the binding of an annexin V trimer to a POPC/POPS lipid bilayer. Calcium ions function as bridges between several negatively charged residues of annexin V and the oxygen atoms of lipids. The preferred calcium‐bridges are those formed via the carboxyl oxygen atoms of POPS lipids. H‐bonds and hydrophobic interactions formed by several critical residues have also been observed in the annexin‐membrane interface. The annexin‐membrane binding causes small changes of annexin trimer structures, while has significant effects on lipid bilayer structures. The lipid bilayer shows a bent shape and forms a concave region in the annexin‐membrane interaction interface, which provides an atomic‐level evidence to support the view that annexins could disturb the stability of lipids and bend membranes. This study provides insights into the commonly occurring PS‐dependent and calcium‐dependent binding of proteins to membranes. Proteins 2014; 82:312–322. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The annexins are a family of proteins that bind acidic phospholipids in the presence of Ca2+. The interaction of these proteins with biological membranes has led to the suggestion that these proteins may play a role in membrane trafficking events such as exocytosis, endocytosis and cell-cell adhesion. One member of the annexin family, annexin II, has been shown to exist as a monomer, heterodimer or heterotetramer. The ability of annexin II tetramer to bridge secretory granules to plasma membrane has suggested that this protein may play a role in Ca2+-dependent exocytosis. Annexin II tetramer has also been demonstrated on the extracellular face of some metastatic cells where it mediates the binding of certain metastatic cells to normal cells. Annexin II tetramer is a major cellular substrate of protein kinase C and pp60src. Phosphorylation of annexin II tetramer is a negative modulator of protein function.Supported by a grant from the Medical Research Council of Canada  相似文献   

3.
Annexins are soluble cytosolic proteins that bind to cell membranes. Annexin A5 self-assembles into a two-dimensional (2D) array and prevents cell rupture by attaching to damaged membranes. However, this process is not fully understood at the molecular level. In this study, we determined the crystal structures of annexin A5 with and without calcium (Ca2+) and confirmed the Ca2+-dependent outward motion of a tryptophan residue. Strikingly, the two structures exhibited the same crystal packing and 2D arrangement into a p3 lattice, which agrees well with the results of low-resolution structural imaging. High-resolution structures indicated that a three-fold interaction near the tryptophan residue is important for mediating the formation of the p3 lattice. A hypothesis on the promotion of p3 lattice formation by phosphatidyl serine (PS) is also suggested. This study provides molecular insight into how annexins modulate the physical properties of cell membranes as a function of Ca2+ concentration and the phospholipid composition of the membrane.  相似文献   

4.
Annexins and S100 proteins represent two large, but distinct, calcium-binding protein families. Annexins are made up of a highly alpha-helical core domain that binds calcium ions, allowing them to interact with phospholipid membranes. Furthermore, some annexins, such as annexins A1 and A2, contain an N-terminal region that is expelled from the core domain on calcium binding. These events allow for the interaction of the annexin N-terminus with target proteins, such as S100. In addition, when an S100 protein binds calcium ions, it undergoes a structural reorientation of its helices, exposing a hydrophobic patch capable of interacting with its targets, including the N-terminal sequences of annexins. Structural studies of the complexes between members of these two families have revealed valuable details regarding the mechanisms of the interactions, including the binding surfaces and conformation of the annexin N-terminus. However, other S100-annexin interactions, such as those between S100A11 and annexin A6, or between dicalcin and annexins A1, A2 and A5, appear to be more complicated, involving the annexin core region, perhaps in concert with the N-terminus. The diversity of these interactions indicates that multiple forms of recognition exist between S100 proteins and annexins. S100-annexin interactions have been suggested to play a role in membrane fusion events by the bridging together of two annexin proteins, bound to phospholipid membranes, by an S100 protein. The structures and differential interactions of S100-annexin complexes may indicate that this process has several possible modes of protein-protein recognition.  相似文献   

5.
Annexin A6 (AnxA6) belongs to the highly conserved annexin protein family. Like other annexins, the function of AnxA6 is linked to its ability to bind phospholipids in a Ca2+-dependent manner, thereby interacting with cellular membranes in a dynamic, reversible and regulated fashion. Upon cell activation, AnxA6 is recruited to the plasma membrane, endosomes and caveolae/membrane rafts to interact with signalling proteins, the endocytic machinery and actin cytoskeleton to inhibit epidermal growth factor receptor and Ras signalling. In addition, AnxA6 associates with late endosomes to regulate cholesterol export leading to reduced cytoplasmic phospholipase A2 activity and caveolae formation. Accordingly, AnxA6 may function as an organizer of membrane domains (i) to create a scaffold for the formation of multifactorial signalling complexes, (ii) to regulate transient membrane–actin interactions during endocytic transport, and (iii) to modulate intracellular cholesterol homeostasis. Altogether, this will regulate critical physiological processes including proliferation, differentiation, inflammation and cell migration.  相似文献   

6.
The transduction of signals across the plasma membrane of cells after receptor activation frequently involves the assembly of interacting protein molecules on the cytoplasmic face of the membrane. However, the structural organization and dynamics of the formation of such complexes has not been well defined. In this study atomic force microscopy was used to monitor the assemblies formed in vitro by two classes of calcium-dependent, membrane-binding proteins that participate in the formation of signaling complexes on membranes - the annexins and the copines. When applied to supported lipid bilayers composed of 25% brain phosphatidylserine and 75% dioleyl phosphatidylcholine in the presence of 1 mM Ca2+ both human annexin A1 and human copine I bound only to specialized domains that appeared to be 0.5 to 1.0 nm lower than the rest of the bilayer. These domains may be enriched in phosphatidylserine and have a more disordered structure allowing probe penetration. Confinement of the binding of the proteins to these domains may be important in the process of concentrating other signaling proteins bound to the copine or annexin. The binding of the annexin promoted the growth of the domains and created additional binding space for the copine. This may reflect a general ability of annexins to alter membrane structure in such a way that C2 domain-containing proteins like copine can bind. Copine I formed a reticular lattice composed of linear elements approximately 45 nm long on the specialized domains. This lattice might provide a scaffold for the assembly and interaction of copine target proteins in signaling complexes.  相似文献   

7.
Creutz CE  Snyder SL 《Biochemistry》2005,44(42):13795-13806
A number of biochemical and genetic studies have suggested that certain annexins play important roles in the endocytic pathway, possibly involving the generation, localization, or fusion of endocytic compartments. In a yeast two-hybrid screen for proteins that interact with the N-terminal domain of annexin A2 we identified the mu2 subunit of the clathrin assembly protein complex AP-2. The interaction depended upon two copies of a Yxx phi amino acid sequence motif (Y = tyrosine, x = variable residue, phi = bulky, hydrophobic residue) in the annexin that is also characteristic of the binding site for mu2 on the cytoplasmic domains of transmembrane receptors. The interaction between mu2 and full-length annexin A2 was demonstrated in vitro to be direct, to require calcium, and to be functional in the sense that annexin A2 was able to recruit the mu2 to immobilized lipids. Examination of other annexins and mu subunits demonstrated that annexin A2 also binds the mu1 subunit of the AP-1 complex, that annexin A6 binds mu1 and mu2, and that annexin A1 binds only mu1. We propose that annexins can "masquerade" as transmembrane receptors when they are attached to membranes in the presence of calcium and that they might therefore function to initiate calcium-regulated coated pit formation at the cell surface or on intracellular organelles.  相似文献   

8.
The reason for the enormous lipid variety present in eukaryotic membranes remains largely an enigma. We suggest that its role is to provide an on-off switch for a signaling event at the membrane level. This is achieved through lipid-lipid interactions that convert membrane protein binding and association events into very cooperative processes while maintaining reversibility. We have previously shown [Hinderliter, A., at al. (2001) Biochemistry 40, 4181-4191] that thermodynamic linkage between an intrinsic tendency for lipid demixing and a preferential interaction of a protein with a specific lipid within the mixture leads to dramatic changes in lipid and protein domain formation. Here, we tested the hypothesis that small alterations in lipid chemical structure alter the magnitude of the net interaction free energy (omega(AB)) between unlike lipids in a predictable manner, and that even very small changes in omega(AB) lead to dramatic changes in bilayer organization when coupled with protein binding. We systematically varied the chemical structure of phosphatidylcholine (PC), in mixtures with a fixed phosphatidylserine (PS), by changing the PC acyl chain length and the degree of unsaturation, and examined domain formation upon addition of a peripheral protein, the synaptotagmin I C2A motif. Experimental excimer/monomer ratios (E/M) of pyrene-substituted lipids mimicking the PS were interpreted using Monte Carlo computer simulations. E/M is larger if the PC melting temperature is lower, suggesting that domain formation is a thermodynamic consequence of weak interactions between PC and PS. Consistent with our hypothesis, only very small changes in omega(AB) were required for prediction of large changes in lipid and protein domain formation.  相似文献   

9.
The sarcolemma of smooth muscle cells is composed of alternating stiff actin-binding, and flexible caveolar domains. In addition to these stable macrodomains, the plasma membrane contains dynamic glycosphingolipid- and cholesterol-enriched microdomains, which act as sorting posts for specific proteins and are involved in membrane trafficking and signal transduction. We demonstrate that these lipid rafts are neither periodically organized nor exclusively confined to the actin attachment sites or caveolar regions. Changes in the Ca2+ concentration that are affected during smooth muscle contraction lead to important structural rearrangements within the sarcolemma, which can be attributed to members of the annexin protein family. We show that the associations of annexins II, V, and VI with smooth muscle microsomal membranes exhibit a high degree of Ca2+ sensitivity, and that the extraction of annexins II and VI by detergent is prevented by elevated Ca2+ concentrations. Annexin VI participates in the formation of a reversible, membrane–cytoskeleton complex (Babiychuk, E.B., R.J. Palstra, J. Schaller, U. Kämpfer, and A. Draeger. 1999. J. Biol. Chem. 274:35191–35195). Annexin II promotes the Ca2+-dependent association of lipid raft microdomains, whereas annexin V interacts with glycerophospholipid microcompartments. These interactions bring about a new configuration of membrane-bound constituents, with potentially important consequences for signaling events and Ca2+ flux.  相似文献   

10.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   

11.
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca2+-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.  相似文献   

12.
The consequences of the binding of annexin V on its lateral mobility and that of lipids were investigated by means of experimental and simulated FRAP experiments. Experiments were carried out on planar supported bilayers (PC/PS 9:1 mol/mol mixtures) in the presence of 1 mM CaCl2 in the subphase. The probes C12-NBD-PS and fluorescein-labeled annexin V were used and the data compared with that previously obtained for C12-NBD-PC [Saurel, O., Cézanne, L., Milon, A., Tocanne, J. F., & Demange, P. (1998) Biochemistry 37, 1403-1410]. At complete coverage of the lipid bilayer by the protein (Cannexin = 80 nM), the lateral mobility of C12-NBD-PC was reduced by 40% while C12-NBD-PS and bound annexin V molecules were nearly immobilized (D < 10(-)11 cm2/s). At moderate protein concentration (20 nM < Cannexin < 80 nM), best fitting of the lipid and protein probe recoveries was achieved with one single diffusion coefficient and a mobile fraction close to 100%, indicating homogeneous lipid and protein populations. In contrast, at low protein concentration (Cannexin < 20 nM), C12-NBD-PS showed a two-component diffusion. The slow PS population at Cannexin < 20 nM and the single PS population at Cannexin > 20 nM moved at the same rate that bound annexin V (mobile fraction close to 100%), indicating strong PS/protein interactions. With the aid of computer simulations of the lateral motion of PC molecules, based on the 2-D crystalline networks formed by annexin V in contact with the lipid bilayer, these FRAP results may be accounted for by considering a rather simple model of a proteolipidic complex consisting of an extended 2-D crystalline protein network facing the lipid bilayer and stabilized by strong interactions between annexin V and PS molecules. In this model, immobilization of annexin V and PS molecules originates from their mutual interactions. The slowing down of PC molecules is due to various obstacles to their lateral diffusion which can be described as: the four PS molecules bound to the protein, the tryptophan 187 which presumably interacts with the lipids at the level of their polar headgroups and probably the three other hydrophobic amino acid residues located on the AB calcium-binding loops of the protein.  相似文献   

13.
Substances able to modulate multidrug resistance (MDR), including antipsychotic phenothiazine derivatives, are mainly cationic amphiphiles. The molecular mechanism of their action can involve interactions with transporter proteins as well as with membrane lipids. The interactions between anionic phospholipids and MDR modulators can be crucial for their action. In present work we study interactions of 2-trifluoromethyl-10-(4-[methanesulfonylamid]buthyl)-phenothiazine (FPhMS) with neutral (PC) and anionic lipids (PG and PS). Using microcalorimetry, steady-state and time-resolved fluorescence spectroscopy we show that FPhMS interacts with all lipids studied and drug location in membrane depends on lipid type. The electrostatic attraction between drug and lipid headgroups presumably keeps phenothiazine derivative molecules closer to surface of negatively charged membranes with respect to neutral ones. FPhMS effects on bilayer properties are not proportional to phosphatidylserine content in lipid mixtures. Behavior of equimolar PC:PS mixtures is similar to pure PS bilayers, while 2:1 or 1:2 (mole:mole) PC:PS mixtures resemble pure PC ones.  相似文献   

14.
To obtain insight into the potential role of the cytoskeleton on lipid mixing behavior in plasma membranes, the current study explores the influence of physisorbed actin filaments (F-actin) on lipid–lipid phase separations in planar model membrane systems containing raft-mimicking lipid mixtures of well-defined compositions using a complementary experimental approach of epifluorescence microscopy, fluorescence anisotropy, wide-field single molecule fluorescence microscopy, and interfacial rheometry. In particular, we have explored the impact of F-actin on cholesterol (CHOL)–phospholipid interactions, which are considered important for the formation of CHOL-enriched lipid raft domains. By using epifluorescence microscopy, we show that physisorbed filamentous actin (F-actin) alters the domain size of lipid–lipid phase separations in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol (CHOL). In contrast, no actin-induced modification in lipid–lipid phase separations is observed in the absence of POPS or when POPS is replaced by another anionic lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG). Wide-field single molecule fluorescence microscopy on binary lipid mixtures indicate that PS and PG lipids show similar electrostatic interactions with physisorbed actin filaments. Complementary fluorescence anisotropy experiments on binary PS lipid-containing lipid mixtures are provided to illustrate the actin-induced segregation of anionic lipids. The similarity of electrostatic interactions between actin and both anionic lipids suggests that the observed differences in actin-mediated perturbations of lipid phase separations are caused by distinct PS lipid–CHOL versus PG lipid–CHOL interactions. We hypothesize that the actin cytoskeleton and some peripheral membrane proteins may alter lipid–lipid phase separations in plasma membranes in a similar way by interacting with PS lipids.  相似文献   

15.
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca2+-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-β-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-β-cyclodextrin complexes restored the Ca2+-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca2+, annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca2+ concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca2+ concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.  相似文献   

16.
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.  相似文献   

17.
The mutual interactions between lipids in bilayers are reviewed, including mixtures of phospholipids, and mixtures of phospholipids and cholesterol (Chol). Binary mixtures and ternary mixtures are considered, with special emphasis on membranes containing Chol, an ordered phospholipid, and a disordered phospholipid. Typically the ordered phospholipid is a sphingomyelin (SM) or a long-chain saturated phosphatidylcholine (PC), both of which have high phase transitions temperatures; the disordered phospholipid is 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) or dioleoylphosphatidylcholine (DOPC). The unlike nearest-neighbor interaction free energies (ωAB) between lipids (including Chol), obtained by an variety of unrelated methods, are typically in the range of 0-400 cal/mol in absolute value. Most are positive, meaning that the interaction is unfavorable, but some are negative, meaning it is favorable. It is of special interest that favorable interactions occur mainly between ordered phospholipids and Chol. The interpretation of domain formation in complex mixtures of Chol and phospholipids in terms of phase separation or condensed complexes is discussed in the light of the values of lipid mutual interactions.  相似文献   

18.
Using a subcellular-specific proteomic approach, we have identified by protein microsequencing, a putative 35-kDa annexin from among the chloroplast envelope polypeptides. To confirm this identification, we demonstrate that (a) a 35-kDa protein, identified as annexin by antibody cross-reactivity, co-purifies with Percoll-purified chloroplasts and their envelope membranes when extracted in the presence of Ca(2+) and (b) the native spinach annexin protein binds to chloroplast-specific lipids in a Ca(2+)-dependent manner. The binding of the spinach annexin to these glycerolipids occurs at similar Ca(2+) concentrations as those, which promote the interaction of annexins to phospholipids in other membranes. Among chloroplast glycerolipids known to be accessible on the cytosolic face (outer leaflet) of the outer envelope membrane, sulfolipid, and probably phosphatidylinositol, would be the sole candidates for a putative Ca(2+)-dependent interaction of annexin with the chloroplast surface.  相似文献   

19.
Properties and partial protein sequence of plant annexins   总被引:20,自引:6,他引:14       下载免费PDF全文
We have examined the characteristics of Ca2+-dependent phospholipid-binding proteins (annexins) in maize (Zea mays L.) coleoptiles and tip-growing pollen tubes of Lilium longiflorum. In maize, there are three such proteins, p35, p33, and p23. Partial sequence analysis reveals that peptides from p35 and p33 have identity to members of the annexin family of animal proteins and to annexins from tomato. Interestingly, multiple sequence alignments reveal that the domain responsible for Ca2+ binding in animal annexins is not conserved in these plant peptide sequences. Although p33 and p35 share the annexin characteristic of binding to membrane lipid, unlike annexins II and VI they do not associate with detergent-insoluble cytoskeletal proteins or with F-actin from either plants or animals. Immunoblotting with antiserum raised to p33/p35 from maize reveals that cross-reactive polypeptides of 33 to 35 kilodaltons are also present in protein extracts from pollen tubes of L. longiflorum. Immunolocalization at the light microscope level suggests that these proteins are predominantly confined to the nongranular zone at the tube tip, a region rich in secretory vesicles. Our hypothesis that plant annexins mediate exocytotic events is supported by the finding that p23, p33, and p35 bind to these secretory vesicles in a Ca2+-dependent manner.  相似文献   

20.
To investigate the effect of cholesterol composition on the binding of factor VIII (FVIII) and annexin V (AV) to membranes, liposomal membranes with phospholipid bilayers of various compositions of phosphatidylcholine (PC), phosphatidylserine (PS), and cholesterol were constructed. A surface plasmon resonance (SPR) biosensor system was employed to measure the equilibrium and rate constants of the bindings. As expected, PS was found to play a dominant role in the binding of AV; its binding level was directly proportional to the PS composition in a liposome. The binding levels of FVIII and AV to liposome increased with an increase in cholesterol composition in liposome. It seemed to suggest that cholesterol in liposome acts as a ‘phospholipid arrangement’ factor by inducing the formation of PS-rich microdomains. However, in the absence of PS (20% on a mole basis), cholesterol could not exert the binding enhancement effect, which again confirmed the critical role of PS in the bindings. Stability of the AV binding was significantly improved by the increase in cholesterol content; for AV, the dissociation rate constant was decreased approximately fivefold, from 1.7 × 10?3 s?1 in the absence of cholesterol to 3.3 × 10?4 s?1 in the presence of only 10% cholesterol. But, for FVIII the binding stability was not so much influenced by the cholesterol addition (up to 50% on a mole basis). In summary, by using liposomes on an SPR system, we were able to demonstrate quantitatively the apparent effects of cholesterol on the binding affinity and stability of the membrane-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号