首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Summary The relation between qualitative and quantitative glucose-dependent alterations of lysosomes in pancreatic islets and the function of the islets was studied. Isolated islets of the mouse were maintained in tissue culture for one week in either 28, 5.5 or 3.3 mmol/l glucose. Insulin biosynthesis, insulin secretion and insulin content of the cultured islets were determined. After culture, the islets were subjected to acid phosphatase cytochemistry and examined by electron microscopy and ultrastructural morphometry. Islets cultured in 28 mmol/l glucose both produced and secreted insulin rapidly. Such islets seemed, however, unable to maintain more than small amounts of granule-stored insulin. Islets cultured at the lower concentrations of glucose displayed a reduced insulin secretion, which apparently resulted in considerable amounts of intracellularly stored insulin. In all cultured islets different types of lysosomes, identified by their acid phosphatase reactivity, could be seen. Dense bodies, i.e., lysosomes characterized by a homogeneous, very fine, particulate content of high density, seemed to predominate at all concentrations of glucose. It is suggested that, in the islets, the dense bodies correspond morphologically to primary lysosomes. Other types of lysosomes with inclusions of various kinds, which were frequent at the two lower concentrations of glucose, may correspond to secondary lysosomes. Morphometry revealed differences between the size distributions of lysosomes in the three experimental groups. Thus, the average lysosomal size was inversely proportional to the concentration of glucose in the culture medium. However, the numerical density of lysosomes was greatest at the highest glucose concentration. The observation of secondary lysosomes, containing material resembling secretory granules, suggests that the increased size and lowered number of lysosomes in islets cultured at low glucose concentrations may depend on a crinophagic process. Such a process, together with insulin biosynthesis and insulin secretion, may be of physiological importance for control of the secretory granule content within the pancreatic B-cell.  相似文献   

2.
Insulin and C-peptide antigenic sites have been revealed in rat pancreatic B cells by applying immunohistochemical and cytochemical techniques. Fluorescein and rhodamine stains at the light-microscope level have detected both antigens in the same B cells. With the protein A-gold technique, labeling for both antigens was found in the cisternae of the rough endoplasmic reticulum, in those of the transitional elements, in all the cisternae of the Golgi apparatus except in the trans-most one, in the smooth but not in the coated vesicles, in the immature and mature secretory granules, and in some lysosomal (multigranular) structures. The fixation procedure used yielded excellent ultrastructural preservation which allowed for high resolution. The various control experiments demonstrated the high specificity of the results. Quantitative evaluations confirmed the qualitative observations in that they documented the specificity of the label and revealed the presence of an increasing gradient for both antigenic sites along the endoplasmic reticulum-Golgi-granule secretory pathway. The quantification also demonstrated various sites in which an increased labeling occurs: the rough endoplasmic reticulum, the smooth vesicles, the trans-cisternae of the Golgi apparatus, and the immature and the mature secretory granules. The Golgi apparatus was composed of three different subcompartments distinguished by their concentration of label. These include the cisternae on the cis-side, those on the trans-side, and the trans-most rigid cisternae. Since insulin and C-peptide form the proinsulin chain, their antigenic sites were found in the same locations along the secretory pathway; differences in location appeared only in the secretory granules, where insulin was concentrated in the core, while C-peptide was found in both the core and the halo of the granules. Furthermore, in the mature secretory granules displaying a crystalline core, insulin was restricted to the core, while C-peptide was confined to the halo. These results are in accord with the biochemical data, which indicate that simultaneous localization of both antigenic sites in compartments upstream to the immature secretory granules reflects their presence in the form of proinsulin. However, upon dissociation of proinsulin into insulin and C-peptide, both antigenic sites are segregated in different locations. The peptides appear to share parallel pathways and a fate which includes secretion through exocytosis or degradation by the lysosomal system.  相似文献   

3.
Human and rat insulin cells show insulin immunoreactivity, and glucagon cells show glucagon immunoreactivity on their membrane surfaces, respectively. The reaction occurs in the form of small dots on the islet cell surface and colocalizes with the chromogranin family of secretory granule markers. Electron microscopy reveals the labeling to occur at sites of exocytotic granule release, involving the surfaces of extruded granule cores. The surfaces of islet cells were labeled both by polyclonal and monoclonal antibodies, excluding that receptor-interacting, anti-idiotypic hormone antibodies were responsible for the staining. Human insulin cells were surface-labeled by monoclonal antibodies recognizing the mature secretory products, insulin and C-peptide but not with monoclonal antibodies specific for proinsulin. Thus, routing of unprocessed preproinsulin to the cell surface may not account for these results. It is concluded that the staining reflects interactions between the appropriate antibodies and exocytotic sites of hormone release.  相似文献   

4.
We have suggested the existence of a novel "constitutive-like" secretory pathway in pancreatic islets, which preferentially conveys a fraction of newly synthesized C-peptide, insulin, and proinsulin, and is related to the presence of immature secretory granules (IGs). Regulated exocytosis of IGs results in an equimolar secretion of C-peptide and insulin; however an assay of the constitutive-like secretory pathway recently demonstrated that this route conveys newly synthesized C-peptide in molar excess of insulin (Arvan, P., R. Kuliawat, D. Prabakaran, A.-M. Zavacki, D. Elahi, S. Wang, and D. Pilkey. J. Biol. Chem. 266:14171-14174). We now use this assay to examine the kinetics of constitutive-like secretion. Though its duration is much shorter than the life of mature granules under physiologic conditions, constitutive-like secretion appears comparatively slow (t1/2 approximately equal to 1.5 h) compared with the rate of proinsulin traffic through the ER and Golgi stacks. We have examined whether this slow rate is coupled to the rate of IG exit from the trans-Golgi network (TGN). Escape from the 20 degrees C temperature block reveals a t1/2 less than or equal to 12 min from TGN exit to stimulated release of IGs; the time required for IG formation is too rapid to be rate limiting for constitutive-like secretion. Further, conditions are described in which constitutive-like secretion is blocked yet regulated discharge of IGs remains completely intact. Thus, constitutive-like secretion appears to represent an independent secretory pathway that is kinetically restricted to a specific granule maturation period. The data support a model in which passive sorting due to insulin crystallization results in enrichment of C-peptide in membrane vesicles that bud from IGs to initiate the constitutive-like secretory pathway.  相似文献   

5.
Sorting ourselves out: seeking consensus on trafficking in the beta-cell   总被引:2,自引:0,他引:2  
Biogenesis of the regulated secretory pathway in the pancreatic beta-cell involves packaging of products, notably proinsulin, into immature secretory granules derived from the trans -Golgi network. Proinsulin is converted to insulin and C-peptide as granules mature. Secretory proteins not entering granules are conveyed by transport intermediates directly to the plasma membrane for constitutive secretion. One of the co-authors, Peter Arvan, has proposed that in addition, small vesicles bud from granules to traffic to the endosomal system. From there, some proteins are secreted by a (post-granular) constitutive-like pathway. He argues that retention in granules is facilitated by condensation, rendering soluble products (notably C-peptide and proinsulin) more available for constitutive-like secretion. Thus he argues that prohormone conversion is potentially important in secretory granule biogenesis. The other co-author, Philippe Halban, argues that the post-granular secretory pathway is not of physiological relevance in primary beta-cells, and contests the importance of proinsulin conversion for retention in granules. Both, however, agree that trafficking from granules to endosomes is important, purging granules of unwanted newly synthesized proteins and allowing their traffic to other destinations. In this Traffic Interchange, the two co-authors attempt to reconcile their differences, leading to a common vision of proinsulin trafficking in primary and transformed cells.  相似文献   

6.
Using immunohistochemistry at the conventional light, confocal and electron microscopic levels, we have demonstrated that rat stomach ECL cells store histamine and pancreastatin in granules and secretory vesicles, while histidine decarboxylase occurs in the cytosol. Furthermore the ECL cells display immunoreactivity for vesicular monoamine transporter type 2 (VMAT-2), synaptophysin, synaptotagmin III, vesicle-associated membrane protein-2, cysteine string protein, synaptosomal-associated protein of 25 kDa, syntaxin and Munc-18. Using electron microscopy in combination with stereological methods, we have evidence to suggest the existence of both an exocytotic and a crinophagic pathway in the ECL cells. The process of exocytosis in the ECL cells seems to involve a class of proteins that promote or participate in the fusion between the granule/vesicle membrane and the plasma membrane. The granules take up histamine by VMAT-2 from the cytosol during transport from the Golgi zone to the more peripheral parts of the cells. As a result, they turn into secretory vesicles. As a consequence of stimulation (e.g., by gastrin), the secretory vesicles fuse with the cell membrane to release their contents by exocytosis. The crinophagic pathway was studied in hypergastrinemic rats. In the ECL cells of such animals, the secretory vesicles were found to fuse not only with the cell membrane but also with each other to form vacuoles. Subsequent lysosomal degradation of the vacuoles and their contents resulted in the development of lipofuscin bodies.  相似文献   

7.
Zhang X  Yuan Q  Tang W  Gu J  Osei K  Wang J 《PloS one》2011,6(11):e27647
Our recent studies have uncovered that aggregation-prone proinsulin preserves a low relative folding rate and maintains a homeostatic balance of natively and non-natively folded states (i.e., proinsulin homeostasis, PIHO) in β-cells as a result of the integration of maturation and disposal processes. Control of precursor maturation and disposal is thus an early regulative mechanism in the insulin production of β-cells. Herein, we show pathways involved in the disposal of endogenous proinsulin at the early secretory pathway. We conducted metabolic-labeling, immunoblotting, and immunohistochemistry studies to examine the effects of selective proteasome and lysosome or autophagy inhibitors on the kinetics of proinsulin and control proteins in various post-translational courses. Our metabolic-labeling studies found that the main lysosomal and ancillary proteasomal pathways participate in the heavy clearance of insulin precursor in mouse islets/β-cells cultured at the mimic physiological glucose concentrations. Further immunoblotting and immunohistochemistry studies in cloned β-cells validated that among secretory proteins, insulin precursor is heavily and preferentially removed. The rapid disposal of a large amount of insulin precursor after translation is achieved mainly through lysosomal autophagy and the subsequent basal disposals are carried out by both lysosomal and proteasomal pathways within a 30 to 60-minute post-translational process. The findings provide the first clear demonstration that lysosomal and proteasomal pathways both play roles in the normal maintenance of PIHO for insulin production, and defined the physiological participation of lysosomal autophagy in the protein quality control at the early secretory pathway of pancreatic β-cells.  相似文献   

8.
9.
In the beta-cells of pancreatic islets, insulin is stored as the predominant protein within storage granules that undergo regulated exocytosis in response to glucose. By pulse-chase analysis of radiolabeled protein condensation in beta-cells, the formation of insoluble aggregates of regulated secretory protein lags behind the conversion of proinsulin to insulin. Condensation occurs within immature granules (IGs), accounting for passive protein sorting as demonstrated by constitutive-like secretion of newly synthesized C- peptide in stoichiometric excess of insulin (Kuliawat, R., and P. Arvan. J. Cell Biol. 1992. 118:521-529). Experimental manipulation of condensation conditions in vivo reveals a direct relationship between sorting of regulated secretory protein and polymer assembly within IGs. By contrast, entry from the trans-Golgi network into IGs does not appear especially selective for regulated secretory proteins. Specifically, in normal islets, lysosomal enzyme precursors enter the stimulus-dependent secretory pathway with comparable efficiency to that of proinsulin. However, within 2 h after synthesis (the same period during which proinsulin processing occurs), newly synthesized hydrolases are fairly efficiently relocated out of the stimulus- dependent pathway. In tunicamycin-treated islets, while entry of new lysosomal enzymes into the regulated secretory pathway continues unperturbed, exit of nonglycosylated hydrolases from this pathway does not occur. Consequently, the ultimate targeting of nonglycosylated hydrolases in beta-cells is to storage granules rather than lysosomes. These results implicate a post-Golgi mechanism for the active removal of lysosomal hydrolases away from condensed granule contents during the storage process for regulated secretory proteins.  相似文献   

10.
The direct identification of the intracellular site where proinsulin is proteolytically processed into insulin has been achieved by immunocytochemistry using an insulin-specific monoclonal antibody. Insulin immunoreactivity is absent from the Golgi stack of pancreatic B-cells and first becomes detectable in clathrin-coated secretory vesicles released from the trans Golgi pole. Clathrin-coated secretory vesicles transform into mature noncoated secretory granules which contain the highest concentration of insulin immunoreactive sites. Maturation of clathrin-coated secretory vesicles is accompanied by a progressive acidification of the vesicular milieu, as evidenced by a cytochemical probe that accumulates in acidic compartments whereupon it can be revealed by immunocytochemistry. Thus packaging of the prohormone in secretory vesicles, and acidification of this compartment, are critical steps in the proper proteolytic maturation of insulin.  相似文献   

11.
Horseradish peroxidase uptake and crinophagy in insulin-secreting cells   总被引:3,自引:0,他引:3  
Upon exposure of pancreatic B cells to exogenous horseradish peroxidase (HRP), a population of secretory granules becomes HRP-labelled. In isolated islets of Langerhans, we studied the fate of HRP-labelled secretory granules during a pulse-chase experiment with HRP in order to assess their relationship with lysosomes containing secretory granule cores. These structures (crinophagic or multigranular bodies) were previously shown to be a site of insulin degradation (Orci et al., J cell biol 98 (1984) 222) [4]. After a 15-min pulse of peroxidase, the number and volume density of HRP-labelled secretory granules decreased over an 85-min chase period, during which the number and volume density of multigranular bodies labelled with HRP was significantly increased. At both time points, the surface density of HRP-labelled Golgi elements was very small compared with that of unlabelled ones. By autoradiography after a 5-min pulse of [3H]leucine and a 55-min chase, followed by a 15-min pulse of HRP and a 85-min chase, we could show that the majority of HRP-containing secretory granules were not radioactively labelled granules. These results suggest that: The low degree of HRP labelling of the Golgi makes it unlikely that secretory granules derive their HRP by budding from HRP-labelled cisternae. HRP-labelled SGs are preferentially transferred to MGBs (which become HRP-labelled) for prospective degradation. HRP labelling does not involve newly-formed mature secretory granules.  相似文献   

12.
Islets of Langerhans isolated from adult rats were maintained in tissue culture for 3 days in the continued presence of [3H]leucine. Labelled proinsulin, C-peptide and insulin were measured by quantitative h.p.l.c., a method which also allowed for resolution of C-peptide I and II, and of insulin I and II (the products of the two rat insulin genes). The results showed that: (1) at early times, proinsulin was the major radiolabelled product; with progressive time in culture, intra-islet levels of [3H]proinsulin decreased, despite continuous labelling with [3H]leucine, indicating that the combined rates of proinsulin conversion into insulin and of proinsulin release, exceeded the rate of synthesis; (2) insulin I levels were always greater than those of insulin II, both in the islets and for products released to the medium; (3) the molar ratio of [3H]insulin I and II to their respective 3H-labelled C-peptides increased with time for products retained within islets, reaching a value close to 3:1 by 3 days; by contrast, for products released to the medium during the culture period, the ratio was always close to unity; (4) when islets were incubated with [3H]leucine for 2 days, and then left for a further 1 day without label (chase period), the intra-islet [3H]insulin/[3H]C-peptide ratios rose to values as high as 9:1. Again, for material released to the medium, the values were close to 1:1; (5) it is concluded that C-peptide is degraded more rapidly than insulin within islet cells, thereby accounting for the elevated insulin/C-peptide ratios. The difference between the ratios observed in the islets and those for material released to the medium is taken to indicate that degradation occurs in a discrete cellular compartment and not in the secretory granule itself.  相似文献   

13.
Summary Islet amyloid peptide (or diabetes-associated peptide), the major component of pancreatic islet amyloid found in type-2 diabetes, has been identified by electronmicroscopic immunocytochemistry in pancreatic B-cells from five non-diabetic human subjects, and in islets from five type-2 diabetic patients. The greatest density of immunoreactivity for islet amyloid peptide was found in electrondense regions of some lysosomal or lipofuscin bodies. The peptide was also localised by quantification of immunogold in the secretory granules of B-cells, and was present in cytoplasmic lamellar bodies. Acid phosphatase activity was also demonstrated in these organelles. Immunoreactivity for insulin was found in some lysosomes. These results suggest that islet amyloid peptide is a constituent of normal pancreatic B-cells, and accumulates in lipofuscin bodies where it is presumably partially degraded. In islets from type-2 diabetic subjects, amyloid fibrils and lipofuscin bodies in B-cells showed immunoreactivity for the amyloid peptide. Abnormal processing of the peptide within B-cells could lead to the formation of islet amyloid in type-2 diabetes.  相似文献   

14.
Processing of proinsulin by transfected hepatoma (FAO) cells.   总被引:2,自引:0,他引:2  
Rat hepatoma (FAO) cells were stably transfected with the gene encoding either rat proinsulin II (using the DOL retroviral vector) or human proinsulin (using the RSV retroviral vector). Using the DOL vector, production of insulin immunoreactive material was stimulated up to 30-fold by dexamethasone (5 x 10(-7) M). For both proinsulins, fractional release of immunoreactive material relative to cellular content was high, in keeping with the absence of any storage compartment for secretory proteins in these cells. Pulse-chase experiments showed kinetics of release of newly synthesized products in keeping with release via the constitutive pathway. High performance liquid chromatography analysis showed immunoreactivity in the medium distributed between three peaks. For rat proinsulin II, the first coeluted with intact proinsulin; the second coeluted with des-64,65 split proinsulin (the product of endoproteolytic attack between the insulin A-chain and C-peptide followed by trimming of C-terminal basic residues by carboxypeptidase); the third (and minor peak) coeluted with native (fully processed) insulin. For human proinsulin, by contrast, the second peak coeluted with des-31,32 split proinsulin (split and trimmed at the B-chain/C-peptide junction). Analysis of cellular extracts showed intact proinsulin as the major product. The generation of the putative conversion intermediates and insulin was not due to proteolysis of proinsulin after its release but rather to an intracellular event. The data suggest that proinsulin, normally processed in secretory granules and released via the regulated pathway, may also be processed, albeit less efficiently, by the constitutive pathway conversion machinery. The comparison of the sites preferentially cleaved in rat II or human proinsulin suggests cleavage by endoprotease(s) with a preference for R/KXR/KR as substrate.  相似文献   

15.
The biological function of the connecting peptide (C-peptide) of proinsulin is unknown. Comparison of all known C-peptide sequences reveals the presence of a highly conserved peptide sequence, Glu/Asp-X-Glu/Asp (X being a hydrophobic amino acid), adjacent to the Arg-Arg doublet at the B chain/C-peptide junction. Furthermore, the next amino acid in the C-peptide sequence is also acidic in many animal species. To test the possible involvement of this hydrophilic domain in insulin biosynthesis, we constructed a mutant of the rat proinsulin II gene lacking the first four amino acids of the C-peptide and expressed either the normal (INS) on the mutated (INSDEL) genes in the AtT20 pituitary corticotroph cell line. In both cases immunoreactive insulin (IRI) was stored by the cells and released upon stimulation by cAMP. In the INS expressing cells, the majority of IRI, whether stored or released in response to a secretagogue, was mature insulin. By contrast, most of the stored and releasable IRI in the INSDEL expressing cells appeared to be (mutant) proinsulin or conversion intermediate with little detectable native insulin. Release of the mutant proinsulin and/or conversion intermediates was stimulated by cAMP. These results suggest that the mutant proinsulin was appropriately targeted to secretory granules and released predominantly via the regulated pathway, but that the C-peptide deletion prevented its conversion to native insulin.  相似文献   

16.
The aim of this study was to evaluate the contribution of insulin processing to the improved meal-related B-cell function previously shown with the DPP-4 inhibitor vildagliptin. Fifty-five patients with type 2 diabetes (56.5+/-1.5 years; BMI=29.6+/-0.5 kg/m(2); FPG=9.9+/-0.2 mmol/l; HbA1c=7.7+/-0.1 %) were studied: 29 patients were treated with vildagliptin and 26 patients with placebo, both added to an ongoing metformin regimen (1.5-3.0 g/day). A standardized breakfast was given at baseline and after 52 weeks of treatment, and proinsulin related to insulin secretion was measured with C-peptide in the fasting and postprandial (over 4 h post-meal) states to evaluate B-cell function. The between-treatment difference (vildagliptin-placebo) in mean change from baseline in fasting proinsulin to C-peptide ratio (fastP/C) was -0.007+/-0.009 (p=0.052). Following the standard breakfast, 52 weeks of treatment with vildagliptin significantly decreased the dynamic proinsulin to C-peptide ratio (dynP/C) relative to placebo by 0.010+/-0.008 (p=0.037). Importantly, when the P/C was expressed in relation to the glucose stimulus (i.e., the fasting glucose and glucose AUC(0-240 min), respectively), the P/C relative to glucose was significantly reduced with vildagliptin vs. placebo, both in the fasting state (p=0.023) and postprandially (p=0.004). In conclusion, a more efficient B-cell insulin processing provides further evidence that vildagliptin treatment ameliorates abnormal B-cell function in patients with type 2 diabetes.  相似文献   

17.
Reversed-phase high-performance liquid chromatography (HPLC) is examined as a method for separating pancreatic peptides. The method was based on gradient elution with acetonitrile in an acid phosphate buffer (pH 3.10). Apart from human and porcine insulin all the other peptide standards tested (thyrotropin-releasing factor, vaso-active intestinal polypeptide, human C-peptide, porcine C-peptide, somatostatin, porcine glucagon, porcine proinsulin and porcine pancreatic polypeptide) could be separated simultaneously in 40 minutes with a binary gradient composed of five linear segments and increasing from 0 to 60% acetonitrile. Human and porcine insulin could be almost completely resolved by a minimal reduction in the steepness of the acetonitrile gradient. Repeated injections of human C-peptide and porcine insulin resulted in a coefficient of variation of less than 1.5% in the retention times. The use of 125I-labelled peptides gave recoveries exceeding 90%. HPLC of acid ethanol extracts of autopsy pancreases from three infants showed that the immunoreactivity of the peptides measured remained unaffected by the chromatography. Both immunoreactive C-peptide and immunoreactive insulin (IRI) were recovered in two peaks, the second common peak representing proinsulin and amounting to 6.5 to 8.4% of total IRI. Immunoreactive glucagon was eluted in a single peak. Chromatography of plasma extracts from two infants of diabetic mothers demonstrated that proinsulin accounted for 59-63% of total IRI, while insulin was separated into two peaks corresponding to the standards of human insulin and porcine insulin. These results indicate that reversed -phase HPLC is a method with a good reproducibility and a high recovery applicable to the rapid and effective separation of pancreatic peptides from biological extracts.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2273-2281
Proinsulin is a single polypeptide chain composed of the B and A subunits of insulin joined by the C-peptide region. Proinsulin is converted to insulin during the maturation of secretory vesicles by the action of two proteases and conversion is inhibited by ionophores that disrupted intracellular H+ gradients. To determine if conversion of prohormone to hormone actually occurs in an acidic secretory vesicle, cultured rat islet cells were incubated in the presence of 3-(2,4- dinitroanilino)-3' amino-N-methyldipropylamine (DAMP), a basic congener of dinitrophenol that concentrates in acidic compartments and is retained there after aldehyde fixation. The cells were processed for indirect protein A-gold colocalization of DAMP, using a monoclonal antibody to dinitrophenol, and proinsulin, using a monoclonal antibody that exclusively reacts with the prohormone. The average density of DAMP-specific gold particles in immature secretory vesicles that contained proinsulin was 71/micron 2 (18 times cytoplasmic background), which indicated that this compartment was acidic. However, the density of DAMP-specific gold particles in the insulin-rich mature secretory vesicle averaged 433/micron 2. This suggests that although proinsulin conversion occurs in an acidic compartment, the secretory vesicles become more acidic as they mature. Since the concentration of anti- proinsulin IgG binding in secretory vesicles is inversely proportional to the conversion of proinsulin to insulin, we were able to determine that maturing secretory vesicles had to reach a critical pH before proinsulin conversion occurred.  相似文献   

19.
The efficient processing of proinsulin into mature insulin and C-peptide is often compromised under conditions of beta cell stress, including diabetes. Impaired proinsulin processing has been challenging to examine by immunofluorescence staining in pancreas tissue because the characterization of antibodies specific for proinsulin, proinsulin intermediates, processed insulin and C-peptide has been limited. This study aimed to identify and characterize antibodies that can be used to detect products of proinsulin processing by immunofluorescence staining in pancreata from different species (mice, rats, dog, pig and human). We took advantage of several knockout mouse lines that lack either an enzyme involved in proinsulin processing or an insulin gene. Briefly, we report antibodies that are specific for several proinsulin processing products, including: a) insulin or proinsulin that has been appropriately processed at the B-C junction; b) proinsulin with a non-processed B-C junction; c) proinsulin with a non-processed A-C junction; d) rodent-specific C-peptide 1; e) rodent-specific C-peptide 2; and f) human-specific C-peptide or proinsulin. In addition, we also describe two ‘pan-insulin’ antibodies that react with all forms of insulin and proinsulin intermediates, regardless of the species. These antibodies are valuable tools for studying proinsulin processing by immunofluorescence staining and distinguishing between proinsulin products in different species.  相似文献   

20.
Summary The reaction mechanism by which Aldehyde Fuchsin selectively stains pancreatic B-cell granules is unknown. The participation of either insulin or proinsulin in the reaction is debatable; the stain may be bound by other components of the B-cell granule or its membrane. Sections of pancreas were stained with a variety of basic stains and specific histochemical reagents with and without appropriate blocking agents. No evidence for strong tissue anions associated with the B-cell granule could be found. Aldehyde Fuchsin staining was not abolished by lowering the pH below the point at which all known tissue anions should be protonated. There was no evidence that the Aldehyde Fuchsin staining solution itself generates reactive groups in the tissue. The results of this investigation support a non-ionic, possibly covalent mechanism for Aldehyde Fuchsin staining of pancreatic B-cell granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号