首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
alpha-Spectrin is a highly expressed membrane protein critical for the flexibility and stability of the erythrocyte. Qualitative and quantitative defects of alpha-spectrin are present in the erythrocytes of many patients with abnormalities of red blood cell shape including hereditary spherocytosis and elliptocytosis. We wished to determine the regulatory elements that determine the erythroid-specific expression of the alpha-spectrin gene. We mapped the 5' end of the alpha-spectrin erythroid cDNA and cloned the 5' flanking genomic DNA containing the putative alpha-spectrin gene promoter. Using transfection of promoter/reporter plasmids in human tissue culture cell lines, in vitro DNase I footprinting analyses, and gel mobility shift assays, an alpha-spectrin gene erythroid promoter with binding sites for GATA-1- and NF-E2-related proteins was identified. Both binding sites were required for full promoter activity. In transgenic mice, a reporter gene directed by the alpha-spectrin promoter was expressed in yolk sac, fetal liver, and erythroid cells of bone marrow but not adult reticulocytes. No expression of the reporter gene was detected in nonerythroid tissues. We conclude that this alpha-spectrin gene promoter contains the sequences necessary for low level expression in erythroid progenitor cells.  相似文献   

2.
Alpha-hemoglobin-stabilizing protein (AHSP) is an erythroid protein that binds and stabilizes alpha-hemoglobin during normal erythropoiesis and in pathological states of alpha-hemoglobin excess. AHSP has been proposed as a candidate gene in some Heinz body hemolytic anemias and as a modifier gene in the beta-thalassemia syndromes. To gain additional insight into the molecular mechanisms controlling the erythroid-specific expression of the AHSP gene and provide the necessary tools for further genetic studies of these disorders, we have initiated identification and characterization of the regulatory elements controlling the human AHSP gene. We mapped the 5'-end of the AHSP erythroid cDNA and cloned the 5'-flanking genomic DNA containing the putative AHSP gene promoter. In vitro studies using transfection of promoter/reporter plasmids in human tissue culture cell lines, DNase I footprinting analyses and gel mobility shift assays, identified an AHSP gene erythroid promoter with functionally important binding sites for GATA-1- and Oct-1-related proteins. In transgenic mice, a reporter gene directed by a minimal human AHSP promoter was expressed in bone marrow, spleen, and reticulocytes, but not in nonerythroid tissues. In vivo studies using chromatin immunoprecipitation assays demonstrated hyperacetylation of the promoter region and occupancy by GATA-1. The AHSP promoter is an excellent candidate region for mutations associated with decreased AHSP gene expression.  相似文献   

3.
Alpha-spectrin is a membrane protein critical for the flexibility and stability of the erythrocyte. We are attempting to identify and characterize the molecular mechanisms controlling the erythroid-specific expression of the alpha-spectrin gene. Previously, we demonstrated that the core promoter of the human alpha-spectrin gene directed low levels of erythroid-specific expression only in the early stages of erythroid differentiation. We have now identified a region 3' of the core promoter that contains a DNase I hypersensitive site and directs high level, erythroid-specific expression in reporter gene/transfection assays. In vitro DNase I footprinting and electrophoretic mobility shift assays identified two functional GATA-1 sites in this region. Both GATA-1 sites were required for full activity, suggesting that elements binding to each site interact in a combinatorial manner. This region did not demonstrate enhancer activity in any orientation or position relative to either the alpha-spectrin core promoter or the thymidine kinase promoter in reporter gene assays. In vivo studies using chromatin immunoprecipitation assays demonstrated hyperacetylation of this region and occupancy by GATA-1 and CBP (cAMP-response element-binding protein (CREB)-binding protein). These results demonstrate that a region 3' of the alpha-spectrin core promoter contains a GATA-1-dependent positive regulatory element that is required in its proper genomic orientation. This is an excellent candidate region for mutations associated with decreased alpha-spectrin gene expression in patients with hereditary spherocytosis and hereditary pyropoikilocytosis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
A region located at kbp -3.9 to -2.6 5' to the first hematopoietic exon of the GATA-1 gene is necessary to recapitulate gene expression in both the primitive and definitive erythroid lineages. In transfection analyses, this region activated reporter gene expression from an artificial promoter in a position- and orientation-independent manner, indicating that the region functions as the GATA-1 gene hematopoietic enhancer (G1HE). However, when analyzed in transgenic embryos in vivo, G1HE activity was orientation dependent and also required the presence of the endogenous GATA-1 gene hematopoietic promoter. To define the boundaries of G1HE, a series of deletion constructs were prepared and tested in transfection and transgenic mice analyses. We show that G1HE contains a 149-bp core region which is critical for GATA-1 gene expression in both primitive and definitive erythroid cells but that expression in megakaryocytes requires the core plus additional sequences from G1HE. This core region contains one GATA, one GAT, and two E boxes. Mutational analyses revealed that only the GATA box is critical for gene-regulatory activity. Importantly, G1HE was active in SCL(-/-) embryos. These results thus demonstrate the presence of a critical network of GATA factors and GATA binding sites that controls the expression of this gene.  相似文献   

13.
14.
15.
为鉴定鱼类肌肉组织特异性顺式调控元件,通过分析斑马鱼多个组织的转录组数据,筛选出肌肉高表达基因及低表达基因.通过MEME对肌肉高表达基因和低表达基因非编码区序列特征进行分析,在5个肌肉高表达基因的转录起始位点上游发现了序列保守的DNA区域,包含6个排列顺序一致的DNA基序.将其中一段目标片段插入具有Tol2转座子元件的...  相似文献   

16.
17.
18.
S Ren  J Li    G F Atweh 《Nucleic acids research》1996,24(2):342-347
Although the human alpha-globin and beta-globin genes are co-regulated in adult life, they achieve the same end by very different mechanisms. For example, a transfected beta-globin gene is expressed in an inducible manner in mouse erythroleukemia (MEL) cells while a transfected alpha-globin gene is constitutively expressed at a high level in induced and uninduced MEL cells. Interestingly, when the alpha-globin gene is transferred into MEL cells as part of human chromosome 16, it is appropriately expressed in an inducible manner. We explored the basis for the lack of erythroid-responsiveness of the proximal regulatory elements of the human alpha-globin gene. Since the alpha-globin gene is the only functional human globin gene that lacks CACCC and GATA-1 motifs, we asked whether their addition to the alpha-globin promoter would make the gene erythroid-responsive in MEL cells. The addition of each of these binding sites to the alpha-globin promoter separately did not result in inducibility in MEL cells. However, when both sites were added together, the alpha-globin gene became inducible in MEL cells. This suggests that erythroid non-responsiveness of the alpha-globin gene results from the lack of erythroid binding sites and is not necessarily a function of the constitutively active, GC rich promoter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号