首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Fatty (fa/fa) rats accumulate more adipose mass than their littermates soon after birth, but they first appear obese during the fourth week of life. We analyzed the effects of fa genotype on growth of pups housed with their dams through 4 wk of age. The fa genotype effects on daily gain were undetectable from 7 to 22 days of age but became highly significant (P = 10(-18)) at 23 days of age. When litters were reduced to 4 pups, fa genotype effects on daily gain also became detectable at 23 days of age. The fa genotype effects on daily gain, stomach contents weight, liver weight, and plasma insulin of rats killed from 20 to 24 days of age displayed a marked genotype by age interaction, becoming highly significant at 23 days of age. These changes occur without the environmental changes induced by separating pups from their dams. These observations suggest that a developmental switch triggers hyperphagia and rapidly increases growth rate of fatty rats after 22 days of age.  相似文献   

2.
1. The populations of alpha 1- and beta-adrenergic receptors in brown adipose tissue (BAT) of genetically obese Zucker rats (fa/fa) were studied with [3H]prazosin and [3H]CGP-12177 respectively. 2. The density of alpha 1-adrenergic receptors in BAT was significantly lower in obese than in lean Zucker rats, both at 2-4 months of age and at 6 weeks of age. The density of beta-adrenergic receptors was identical in BAT of lean and obese 6-week-old Zucker rats. 3. Cold-acclimation increased the alpha 1-receptor density significantly in BAT of both lean and obese Zucker rats, and the number of beta-receptors was also somewhat increased. 4. Sucrose feeding did not affect the density of alpha 1-receptors in BAT of lean or obese Zucker rats, but it increased beta-receptor density. 5. Adrenalectomy restored the density of alpha 1-adrenergic receptors in BAT of obese Zucker rats to the value observed in lean rats. 6. It is concluded that there is a direct correlation between alpha 1-receptor density and tissue recruitment, and that alpha 1-receptor density is thus positively correlated with sympathetic activity. beta-Receptor density is apparently better correlated with feeding conditions.  相似文献   

3.
A previous study from our laboratory showed that maternal food restriction (MFR) delays thermoregulation in newborn rats. In neonates brown adipose tissue (BAT) is essential for thermogenesis due to the presence of uncoupling proteins (UCPs). The aim of this study was to evaluate the influence of MFR on the UCPs mRNA and protein expression in BAT and skeletal muscle (SM) of the newborn rat. Female Wistar EPM-1 control rats (CON) received chow ad libitum during pregnancy, whereas food-restricted dams (RES) received 50% of the amount ingested by CON. Fifteen hours after birth, the litters were weighed and sacrificed. Blood was collected for hormonal analysis. BAT and SM were used for determination of UCPs mRNA and protein expression, and Ca2+-ATPase sarcoplasmic reticulum (SERCA1). RES pups showed a significant reduction in body weight and fat content at birth. MFR caused a significant increase in the expression of UCP1 and UCP2 in BAT, without changes in UCP3 and SERCA1 expression in BAT and SM. No differences between groups were found for leptin, T4 and glucose levels. RES pups showed increased insulin and decreased T3 levels. The delay in development of thermoregulation previously described in RES animals appears not to result from impairment in thermogenesis, but from an increase in heat loss, since MFR caused low birth weight in pups, leading to greater surface/volume ratio. The higher expression of UCP1 and UCP2 in BAT suggests a compensatory mechanism to increased thermogenesis.  相似文献   

4.
The aim of this study was to discover which of three major abnormalities of the genetically obese Zucker rat (fa/fa), namely hyperphagia, excess adiposity, and hyperlipidemia, is the first to appear prior to manifest obesity, i.e., before weaning. Suckling fa/fa rats, bred from heterozygous parents, were detected by sizing fat cells obtained from an inguinal fat pad biopsy. Cell hypertrophy was observed in fa/fa rats, compared to Fa/-littermates of the same sex, as soon as 5-7 days after birth. Prediction of fa/fa genotype at this age by this method was assessed using a series of 80 pups and proved to be totally successful. The identity of the "predicted" obese pups was confirmed morphologically at 6 weeks of age. Food (milk) intake was estimated from water turnover rates determined on 86 pups aged 2-8 days using tritiated water. The results show that 7-day-old fa/fa rats had heavier inguinal fat pads with larger adipocytes and higher lipoprotein lipase activity than their lean controls. There was no genotype effect on water intake adjusted to body weight during the first week of life. Moreover weight of stomach contents and triglyceridemia were similar in all animals at 7 days. These results show that excess adiposity develops in the fa/fa rat during the first week of life, before hypertriglyceridemia and hyperphagia, and raises the question of whether this adiposity results from a defect in energy expenditure or an abnormality of fat cell storage capacity, or both.  相似文献   

5.
The development of the lipogenic capacity in brown adipose tissue was studied in suckling lean (Fa/fa) and obese (fa/fa) Zucker pups aged from 7 to 22 days. In both lean and obese pups, activities of the two key lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase, and of citrate cleavage enzyme rose from the early to the late suckling period. Compared with lean pups, 7-day-old fa/fa pups showed a 35% increase in fat accumulation in interscapular brown adipose tissue and a 25% increase in fatty acid synthetase activity. By 10 days of age, fat deposition, lipogenesis in vivo (assessed by the incorporation of 3H from 3H2O into fatty acids) and fatty acid synthetase activity were 1.5-2-fold higher in pre-obese than in lean pups. Compared with lean pups, the increased lipogenesis in vivo observed in brown adipose tissue of 10-day-old pre-obese pups could not entirely account for the difference in fat deposition observed in this tissue, suggesting that additional mechanisms are at play to explain the increased fat content of this tissue.  相似文献   

6.
Abstract: Prolonged activation of an A2A adenosine receptor significantly inhibits the cellular response to subsequent stimulation (A2A desensitization). We have reported previously that activation of phosphodiesterase (PDE) contributes to A2A desensitization in PC12 cells. In the present study, we show that a type IV PDE (PDE4)-selective inhibitor (Ro 20-1724) effectively blocks the increase in PDE activity in desensitized cells. Thus, PDE4 appears to be the PDE specifically activated during A2A desensitization in PC12 cells. Prolonged treatment of PC12 cells with an A2A-selective agonist (CGS21680) leads to increased PDE4 activity in a dose-dependent manner, which can be blocked by an A2A-selective antagonist [8-(3-chlorostyryl)caffeine]. Using two PDE4 antibodies, we were able to demonstrate that the levels of two PDE4-immunoreactive bands (72 and 79 kDa) were increased significantly during A2A desensitization. Prolonged treatment with forskolin to elevate intracellular cyclic AMP contents also resulted in increased PDE4 activity. In addition, activation of PDE4 activity during A2A desensitization could be blocked by a protein kinase A (PKA)-selective inhibitor (H89) and was not observed in a PKA-deficient PC12 cell line (A123). Taken together, activation of PDE4 via a cyclic AMP/PKA-dependent pathway plays a critical role in dampening the signal of the A2A receptor.  相似文献   

7.
Brown adipose tissue (BAT) dysfunction is associated with obesity and its comorbidities, such as hypertension, and the improvement of BAT function seems important for obesity management. Here we investigated the effects of dietary calcium supplementation on BAT autonomic nerve activity, sympathoadrenal function and cardiovascular parameters in adult obese rats that were raised in small litters (SL group). Three days after birth, SL litters were adjusted to three pups to induce early overfeeding. The control group remained with 10 pups/litter until weaning (NL group). At PN120, the SL group was randomly divided into the following: rats fed with standard chow (SL) and rats fed with dietary calcium carbonate supplementation (SL-Ca, 10 g/kg chow). Animals were killed either at PN120 or PN180. At both ages, SL rats had higher BAT autonomic nervous system activity, mass and adipocyte area, as well as increased heart rate and blood pressure (systolic and diastolic); 2 months of calcium supplementation normalized these parameters. At PN180 only, UCP1 and TRβ1 in BAT were decreased in SL rats. These changes were also prevented by calcium treatment. Also at PN180, the SL group presented higher tyrosine hydroxylase and adrenal catecholamine contents, as well as lower hypothalamic POMC and MC4R contents. Calcium supplementation did not revert these alterations. Thus, we demonstrated that dietary calcium supplementation was able to improve cardiovascular parameters and BAT thermogenesis capacity in adult animals that were early overfed during lactation.  相似文献   

8.
黄晨西  林琳  李庆芬 《兽类学报》2006,26(4):346-353
本文通过测定静止代谢率(RMR)、非颤抖性产热(NST)、线粒体呼吸酶、脂肪代谢酶活力、褐色脂肪 组织(BAT)线粒体GTP 结合能力、下丘脑促甲状腺激素释放激素(TRH)和促肾上腺激素释放激素(CRH)等指标,探讨短光照对达乌尔黄鼠产热的诱导和调节。结果表明,温暖(22℃ ) 短光照(8D∶ 6L)组,达乌尔黄鼠的RMR、NST、肝脏和BAT 线粒体细胞色素C 氧化酶活力以及BAT 线粒体GTP 结合能力均明显高于温暖长光照(16D∶ 8L)组中的动物,而体重、BAT 重量、肝细胞呼吸、BAT α - 磷酸甘油氧化酶活力则没有明显变化。短光照组黄鼠下丘脑TRH 水平显著高于长光照组,而血清中三碘甲腺原氨酸(T3 )及甲状腺素(T4 )浓度、T3 / T4 以及BAT 中T4 - 5’脱碘酶的活性没有明显变化。短光照组黄鼠下丘脑CRH 水平显著高于对照组,而肾上腺皮质酮含量无明显变化。结果表明短光照能够诱导达乌尔黄鼠产热增加,主要是通过激活细胞色素C 氧化酶活性和增加BAT 中解偶联蛋白浓度;短光照可能激活下丘脑TRH 和CRH,但它们没有直接诱导产热增加,推测其增加了黄鼠潜在的产热能力。  相似文献   

9.
3':5'-Cyclic-AMP phosphodiesterase (PDE) (EC 3.1.4.17) activity was measured in interscapular brown adipose tissue (BAT) and in white epididymal adipose tissue of rats acclimated to constant or fluctuating cold. Experiments were carried out on isolated adipocytes or tissue homogenates. In brown or white adipose tissue or isolated adipocyte homogenates, two different apparent Km values were found according to the substrate (cAMP) concentration. The low Km was at about 10(-6) M and the high one at about 10(-4) M. The apparent V of the high Km enzyme was about 10-fold higher than the V of the low Km enzyme. Cold acclimation to constant or fluctuating cold did not modify appreciably the Km or V values. For low substrate concentrations (10(-6)-10(-8) M), the specific activity of PDE expressed per milligram of protein was decreased in BAT adipocytes of the two groups of cold-acclimated rats, compared to controls. Inversely, it was increased in total tissue homogenates. These variations were smaller in fluctuating cold than in constant cold-acclimate rats. They could, in part, induce the increases in lipolysis and in blood flow observed in the BAT of cold-acclimated rats.  相似文献   

10.
The influence of increasing the in vivo concentration of cyclic AMP on the activity of cyclic nucleotide phosphodiesterase (PDE) in rat heart was investigated. One, three, and five hourly injections of 5.0 mg dibutyryl (Bt2) cyclic AMP significantly increased the activity of PDE in the supernatant fraction of rat heart using 1.0 microM cyclic AMP as the assay substrate concentration. When 100 microM cyclic AMP was used in the assay reaction, increases in enzymes activity were seen following five and eight nucleotide injections. The nucleotide-induced increase in PDE activity was dose dependent. When the five-injection protocol was used, PDE activity remained elevated for at least 4 h, while activity had returned to control levels within this time when two hourly injections were used. The nucleotide stimulation of PDE activity was blocked by cycloheximide. Five hourly infections of Bt2 cyclic AMP increased PDE activity in the liver and fast-twitch red muscle. A reduction in PDE activity in fast-twitch white muscle was seen following nucleotide injections. These findings are consistent with the hypothesis that prolonged elevations in the intracellular concentration of cyclic AMP cause an elevation in myocardial PDE activity. The increased activity seems to be the result of protein synthesis. These data suggest that cyclic AMP contributes significantly in regulating its own metabolism in the rat heart.  相似文献   

11.
Developmental changes in hepatic growth hormone binding sites were examined in the genetically obese male fa/fa rats and in the lean littermates. At 16 days, fa/fa pups are normoinsulinemic; the specific binding of 125I-hGH to liver membranes is comparable in the two genotypes. At 4 weeks and later on, plasma membranes and Golgi fractions of male obese Zucker rats have more GH binding sites than lean littermates. The GH pituitary content is comparable in the two genotypes from 2 to 8 weeks and in 14-week-old fa/fa rats it is half that in lean animals. In the two genotypes plasma IGFI dramatically increases during puberty. At 4 weeks, plasma IGFI level is significantly higher in fa/fa rats than in lean littermates. In this model of genetic obesity, an increased GH binding to liver membranes is observed after the third week of life, shortly after the onset of hyperinsulinemia in the fa/fa rat.  相似文献   

12.
Smooth muscle of the gut undergoes rhythmic cycles of contraction and relaxation. Various constituents in the pathways that mediate muscle contraction could act to cross-regulate cAMP or cGMP levels and terminate subsequent relaxation. We have previously shown that cAMP levels are regulated by PKA-mediated phosphorylation of cAMP-specific phosphodiesterase 3A (PDE3A) and PDE4D5; the latter is the only PDE4D isoform expressed in smooth muscle. In the present study we have elucidated a mechanism whereby cholecystokinin (CCK) and, presumably, other contractile agonists capable of activating PKC can cross-regulate cAMP levels. Forskolin stimulated PDE4D5 phosphorylation and PDE4D5 activity. CCK significantly increased forskolin-stimulated PDE4D5 phosphorylation and activity and attenuated forskolin-stimulated cAMP levels. The effect of CCK on forskolin-induced PDE4D5 phosphorylation and activity and on cAMP levels was blocked by the inhibitors of PLC or PKC and in cultured muscle cells by the expression of Galpha(q) minigene. The effects of CCK on PDE4D5 phosphorylation, PDE4D5 activity, and cAMP levels were mimicked by low (1 nM) concentrations of okadaic acid, but not by a low (10 nM) concentration of tautomycin, suggesting involvement of PP2A. Purified catalytic subunit of PP2A but not PP1 dephosphorylated PDE4D5 in vitro. Coimmunoprecipitation studies demonstrated association of PDE4D5 with PP2A and the association was decreased by the activation of PKC. In conclusion, cAMP levels are cross-regulated by contractile agonists via a mechanism that involves PLC-beta-dependent, PKC-mediated inhibition of PP2A activity that leads to increase in PDE4D5 phosphorylation and activity and inhibition of cAMP levels.  相似文献   

13.
Adipocyte lipolysis is dependent on an increase in the intracellular concentration of cAMP. Intracellular phosphodiesterases (PDEs) hydrolyze cAMP and limit stimulation of lipolysis. In the present study, the mRNA expression of PDE4 subtypes and the antilipolytic role of PDE4 in rat adipocytes were investigated. Fragments encoding PDE4A (233 bp), PDE4B (786 bp), PDE4C (539 bp), and PDE4D (262 bp) sequences were amplified by RT-PCR. The mRNA expression of PDE4 subtypes (A, B, C, D) determined by real-time quantitative PCR was 7, 18.7, 18.9, and 7.2% relative to PDE3B. Inhibition of PDE4 by rolipram increased basal lipolysis and reversed in part prostaglandin E2 antilipolysis. The combination of PDE3 and PDE4 inhibitors synergistically reversed both prostaglandin E2 and phenylisopropyl adenosine antilipolysis. Stimulation of adipocytes with prostaglandin E2 increased total PDE activity and PDE3 activity measured by hydrolysis of 3[H]cAMP by the particulate fraction of adipocytes. The present study confirmed that mRNAs for all four PDE4 subtypes were expressed in rat adipocytes, with PDE4B and PDE4C predominant. Moreover, PDE4 not only limits the rate of basal lipolysis but also contributes to prostaglandin E2 antilipolysis in rat adipocytes.  相似文献   

14.
Traumatic brain injury (TBI) results in significant inflammation which contributes to the evolving pathology. Previously, we have demonstrated that cyclic AMP (cAMP), a molecule involved in inflammation, is down‐regulated after TBI. To determine the mechanism by which cAMP is down‐regulated after TBI, we determined whether TBI induces changes in phosphodiesterase (PDE) expression. Adult male Sprague Dawley rats received moderate parasagittal fluid‐percussion brain injury (FPI) or sham injury, and the ipsilateral, parietal cortex was analyzed by western blotting. In the ipsilateral parietal cortex, expression of PDE1A, PDE4B2, and PDE4D2, significantly increased from 30 min to 24 h post‐injury. PDE10A significantly increased at 6 and 24 h after TBI. Phosphorylation of PDE4A significantly increased from 6 h to 7 days post‐injury. In contrast, PDE1B, PD4A5, and PDE4A8 significantly decreased after TBI. No changes were observed with PDE1C, PDE3A, PDE4B1/3, PDE4B4, PDE4D3, PDE4D4, PDE8A, or PDE8B. Co‐localization studies showed that PDE1A, PDE4B2, and phospho‐PDE4A were neuronally expressed, whereas PDE4D2 was expressed in neither neurons nor glia. These findings suggest that therapies to reduce inflammation after TBI could be facilitated with targeted therapies, in particular for PDE1A, PDE4B2, PDE4D2, or PDE10A.  相似文献   

15.
Acclimation of rats to cold caused 45% increase in the concentration of triidothyronine (T3) and 35% increase in the concentration of thyroxine (T4) in serum. Exposure of cold-acclimated rats to heat (12 hr, 37 degrees C) failed to decrease the concentrations of thyroid hormones in circulation. The concentration of T3 in brown adipose tissue (BAT) increased almost 10-fold on cold acclimation. Iodothyronine deiodinase activity also registered 3-fold increase. Exposure of cold-acclimated animals to heat caused decrease in the concentration of T3 in BAT without appreciably affecting T4 concentration. In liver tissue, the changes in hormone concentrations were quite small compared to those in BAT. On thyroidectomy or when fed with propyl thiouracil, rats could not survive exposure to the cold. The concentration of insulin in circulation showed small increase, while that in the tissues showed significant decrease on acclimation of rats to the cold. The concentration of the hormone in BAT registered significant increase on exposure of cold-acclimated animals to heat (12 hr, 37 degrees C). The increase in liver was marginal. The temperature-dependent response of T3 indicates an important role for this hormone in rapid physiological response in BAT.  相似文献   

16.
Inactivation of the cyclic nucleotide signal in granulosa cells depends on a complex array of cyclic nucleotide phosphodiesterases (PDE). In order to examine the role of PDE in cyclic AMP (cAMP) signaling in granulosa cells, the present study examined the expression of PDE4D proteins and regulation of cAMP-PDE activities in cultured rat granulosa cells. The results of immunoblot analyses showed that two predominant PDE4D subtypes of approximately 80 and 70 kDa appeared when immature rat granulosa cells were treated with FSH. However, these two new subtypes presumed to be PDE4D proteins were not influenced by treatments of DETA/NO, cGMP and PKB inhibitor, LY294002. Immature rat granulosa cells treated with medium alone displayed low cAMP-PDE activity throughout 48 h of culture while those treated with FSH (2 ng.mL-1) showed a marked increase in cAMP-PDE activity between 6 and 12 h of culture, followed by a decline. The findings from the present study indicate that the increased cAMP-PDE activity by FSH is mainly related to the changes of PDE4D protein levels. However, the inhibitory effects of NO on cAMP accumulation in rat granulosa cells are not via the increased cAMP-PDE activity.  相似文献   

17.
We have previously demonstrated that the relative expression of myosin heavy chain-beta (MHC-β) in both ventricles of rats exposed to long-term hypobaric hypoxia correlated significantly with the relative ventricular mass. In the present study, we investigated whether an increased expression of MHC-β was accompanied by a reduction in cyclic AMP (cAMP) activity in hypoxia-induced hypertrophied right ventricle (RV). We used male Wistar–Kyoto rats born and raised at simulated altitudes (2200 m: H2 group or 4000 m: H4 group) compared to age-matched sea level controls (SC group). There were no significant differences between the groups in basal and forskolin-stimulated adenylyl cyclase (AC) activities. The basal and IBMX-inhibited phosphodiesterase (PDE) activities were slightly higher in both hypoxic groups (p>0.05), except that the H2 group had a higher basal PDE activity than the SC group (p<0.05). The AC/PDE activity ratios were significantly decreased in both hypoxic groups (p<0.05), suggesting that low concentrations of cellular cAMP were maintained in the RV under hypoxic conditions. However, there were no correlations between MHC-β expression and either AC activity, PDE activity, or AC/PDE activity ratio. These results provided evidence against the causal role for cAMP concentration in the expression of MHC-β associated with hypoxia-induced ventricular hypertrophy.  相似文献   

18.
A single intravenous injection of recombinant human tumour necrosis factor (TNF) resulted in significant, but transient (24–48 hr) reductions in food intake and body weight, and increases in rectal temperature, resting oxygen consumption (VO2) and brown adipose tissue (BAT) thermogenic activity (mitochondrial GDP-binding). The increased VO2 was inhibited by -adrenergic blockade (propranolol), and activation of BAT was prevented by denervation of the tissue. In adult (4-month old) animals, TNF induced greater reductions in food intake and body weight, caused general malaise and some fatalities, but did not significantly alter VO2 or BAT activity. However, the reduction in VO2 following -adrenergic blockade was greater in TNF-treated rats and BAT activity was enhanced when compared to pair-fed controls. Injection of adult rats with gamma-interferon induced small changes in body weight and temperature which were slightly potentiated when injected with a low dose of TNF. The results indicate that TNF stimulates sympathetic outflow to BAT. This effect may be partly responsible for the increases in body temperature and metabolic rate associated with TNF treatment and with cancer cachexia.  相似文献   

19.
R Bazin  D Eteve    M Lavau 《The Biochemical journal》1984,221(1):241-245
GDP binding to brown-adipose-tissue mitochondria of obese Zucker-rat (fa/fa) pups aged 2-14 days was significantly less than in lean control rats. Scatchard analysis in 10-day-old pups suggests that there was a large decrease in GDP-binding sites. However, a significant increase in fat content in brown adipose tissue of 2-day-old pre-obese pups raised the question of the sequential order and causal relationship between these two derangements.  相似文献   

20.
Abstract: In a previous study, it was observed that the activity of rolipram-sensitive, low- K m, cyclic AMP phosphodiesterase (PDE4) was decreased in vivo with diminished noradrenergic stimulation. The results of the present experiments indicated that the reduction in the activity may be associated with down-regulation of PDE4 protein. Immunoblot analysis using PDE4-specific, subfamily-nonspecific antibody (K116) revealed four major bands of PDE4 in rat cerebral cortex; those with apparent molecular masses of 109 and 102 kDa are variants of PDE4A. Diminished noradrenergic activity, produced by intracerebroventricular infusion of 6-hydroxydopamine (6-OHDA) or chronic subcutaneous infusion of propranolol, decreased the intensities of the protein bands for the 109- and 102-kDa PDE4A variants in rat cerebral cortex but not of the 98- or 91-kDa PDE4 forms. 6-OHDA-induced noradrenergic lesioning also decreased the content of 102-kDa PDE4A in hippocampus as labeled by PDE4A-specific antibody (C-PDE4A). Enhanced noradrenergic stimulation up-regulated PDE4 in cerebral cortex. This was indicated by the finding that repeated treatment with desipramine increased the intensity of the protein band for the 102-kDa PDE4 but not for the other variants of PDE4. These results suggest that PDE4 subtypes are differentially regulated at the level of expression, as evidenced by an apparent change in the amount of PDE4 protein, following changes in noradrenergic activity. These observations are consistent with the notion that PDE4s, especially the PDE4A variants with molecular masses of 109 and 102 kDa, play an important role in maintaining the homeostasis of the noradrenergic signal transduction system in the brain and may be involved in the mediation of antidepressant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号