首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three containers commonly used to transport cooled equine semen (Equitainer, ExpectaFoal and a Swedish-designed semen-transport container, previously called the Salsbro Box and now called Equine Express) were compared, using four ejaculates from each of three stallions. Each ejaculate was diluted to a spermatozoal concentration of 25 x 10(6)/ml with a nonfat dry milk-glucose extender containing amikacin sulfate (1 mg/ml) and potassium penicillin G (1000 units/ml). Extended semen was divided into three 40-ml aliquots for placement in each of the three semen-transport containers. The extended semen was stored in the containers for 24 h prior to analysis. Stored semen was warmed for 15 min at 37 degrees C, then video records of sperm motility were obtained for evaluation using a Hamilton-Thorne motility analyzer equipped with a stage warmer set at 37 degrees C. The temperature of 40-ml aliquots of semen extender stored in each container was also measured for 60 h using a copper-constantan thermocouple placed in the center of the stored samples. Intervals from onset of storage until sample temperature exceeded 10 degrees C during the warming phase were 27.5, 33.5 and 53 h, for the Expecta-Foal, Equine Express and Equitainer, respectively. Semen extender stored in the Equitainer compared most favorably to ideal cooling rates and storage temperatures published previously. Following a 24-h storage period, the mean percentages of motile, progressively motile, and rapidly motile spermatozoa, as well as the mean spermatozoal curvilinear velocity were similar (P > 0.05) among the three containers.  相似文献   

2.
The aim of this study was to determine if dead spermatozoa reduced motility or membrane integrity of live spermatozoa in fresh and cooled-stored equine semen. Three ejaculates from each of three stallions were centrifuged and virtually all seminal plasma was removed. Spermatozoa were resuspended to 25 x 10(6) spermatozoa/ml with EZ-Mixin CST extender and 10% autologous seminal plasma, then divided into aliquots to which 0 (control), 10, 25, 50, or 75% (v/v) dead spermatozoa were added. Dead spermatozoa preparations contained 25 x 10(6) spermatozoa/ml and 10% seminal plasma from pooled ejaculates of the three stallions, in EZ-Mixin CST extender. Spermatozoa were killed in the pooled ejaculates by repeated freezing and thawing, then stored at -20 degrees C until warmed to 37 degrees C and mixed with aliquots of fresh spermatozoa to be cooled and stored in an Equitainer for 24h. Motion characteristics (% total motility (MOT), % progressive motility (PMOT), and mean curvilinear velocity (VCL)) for fresh and 24h cooled samples were determined using a computerized spermatozoal motion analyzer. The presence of up to 75% dead spermatozoa did not adversely affect MOT or PMOT of live spermatozoa in either fresh or cooled-stored semen. However, VCL and the percentage of membrane-intact spermatozoa were reduced compared to control samples when 75% (v/v) dead spermatozoa were added. Membrane integrity, as assessed by staining with carboxyfluoresein diacetate-propidium iodide, was highly correlated (r>0.8; P<0.001) with MOT and PMOT in both fresh and cooled-stored semen samples. Results of this study have application to the processing of both cooled and frozen equine semen.  相似文献   

3.
Malmgren L 《Theriogenology》1998,50(6):833-839
The storage and transport of cooled, liquid semen is an effective way of facilitating the use of desirable stallions for breeding mares located on distant farms. The Equitainer System is the most widely used transport container and it has been shown that it is possible to ship semen in this container and obtain good conception rates. However, the cost of Equitainers is high, and stud-farms that ship large quantities of semen have tended to rely on cheaper alternatives, even though little documentation exists concerning their reliability, especially under extreme temperature conditions. Two different containers for transporting equine semen (the Equitainer and a styrofoam box) were compared in their effectiveness at maintaining semen quality (i.e. sperm motility and plasma membrane integrity) during 24 h of storage. The transport containers were stored at 2 different environmental temperatures, i.e., room temperature (20 degrees C) and 37 degrees C. Thirty-seven ejaculates from 10 Standardbred stallions (3 to 6 samples per stallion) were examined. Sperm function and plasma membrane integrity were assessed using a Mika Motion Analyzer and a fluorescein stain (Calcein AM/Ethidium homodimer) in fresh diluted semen that had been stored for 24 h at room temperature (20 degrees C). Another 18 ejaculates from 5 stallions were examined using methods described above, but the transport boxes were kept at a high environmental temperature (37 degrees C). After storage at room temperature, there was no significant difference in total sperm motility and frequency of spermatozoa with an intact plasma membrane between the 2 types of transport boxes. A significant difference was seen in linear sperm motility, with the Equitainer being the better container. However, a significant difference was also seen in average path velocity, with the styrofoam box being the better container. After storage at 37 degrees C, the Equitaner maintained semen quality better. A significant difference was seen in total sperm motility, average path velocity, lateral head displacement and frequency of spermatozoa with an intact plasma membrane between the 2 types of transport boxes. Although, both transport containers were satisfactory when used under normal conditions. The Equitainer seemed superior under more extreme temperatures and during longer transport periods (> 24 to 30 h).  相似文献   

4.
Three ejaculates from each of eight stallions were subjected to cryopreservation in a milk/egg yolk-based freezing extender or an egg yolk-based freezing extender. Semen was exposed to a fast prefreeze cooling rate (FAST; semen immediately subjected to cryopreservation) or a slow prefreeze cooling rate (SLOW; semen pre-cooled at a controlled rate for 80 min prior to cryopreservation). Postthaw semen was diluted in initial freezing medium (FM) or INRA 96 (IMV Technologies, L'Aigle, France) prior to analysis of 10 experimental end points: total motility (MOT; %), progressive motility (PMOT; %), curvilinear velocity (VCL; μm/s), linearity (LIN; %), intact acrosomal and plasma membranes (AIMI; %), intact acrosomal membranes (AI; %), intact plasma membranes (MI; %), and DNA quality. Eight of 10 experimental endpoints (MOT, PMOT, average-path velocity [VAP], mean straight-line velocity [VSL], LIN AIMI, AI, and MI) were affected by extender type, with egg yolk-based extender yielding higher values than milk/egg yolk-based extender (P < 0.05). Exposure of extended semen to a slow prefreeze cooling period resulted in increased values for six of eight endpoints (MOT, PMOT, VCL, AIMI, AI, and MI), as compared with a fast prefreeze cooling period (P < 0.05). As a postthaw diluent, INRA 96 yielded higher mean values than FM for MOT, PMOT, VCL, average-path velocity, and mean straight-line velocity (P < 0.05). Treatment group FM yielded slightly higher values than INRA 96 for LIN and MI (P < 0.05). In conclusion, a slow prefreeze cooling rate was superior to a fast prefreeze cooling rate, regardless of freezing extender used, and INRA 96 served as a satisfactory postthaw diluent prior to semen analysis.  相似文献   

5.
Motion characteristics of cooled stallion spermatozoa in 2 freezing extenders were studied. Ejaculates from 8 stallions were split into treatments and cooled in thermoelectric cooling units at each of 2 rates. Cooling started at 37 degrees C for Experiments 1 and 3 and at 23 degrees C for Experiments 2 and 4, at a rate of -0.7 degrees C/min to 20 degrees C and from 20 to 5 degrees C, at either -0.05 degrees C/min (Rate I) or -0.5 degrees C/min (Rate II). Percentages of motile (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h. Treatments in Experiment 1 were modified skim milk extender (SM); SM + 4% egg yolk (EY); SM + 4% glycerol (GL); and SM + 4% egg yolk + 4% glycerol (EY + GL). At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in SM + EY; spermatozoa in SM + GL had the highest MOT and PMOT. Thus, glycerol partially protected spermatozoa against the effects of cooling after long-term storage. Treatments in Experiment 2 were SM, semen centrifuged and pellet resuspended in SM (SMc), SM + EY, and semen centrifuged and pellet resuspended in SM + EY (EYc). Spermatozoa in SM + EYc had the highest (P < 0.05) PMOT at 24 h and MOT and PMOT at 48 hours. Spermatozoa in SM + EY (not centrifuged) had the lowest MOT and PMOT at 24 and 48 h, respectively. There was a detrimental interaction between egg yolk and seminal plasma. Extenders in Experiment 3 were Colorado extender (CO3), CO3 + 4% egg yolk (EY), CO3 + 4% glycerol (GL), and CO3 + 4% egg yolk + 4% glycerol (EY + GL). Spermatozoa in CO3 + EY had the lowest (P < 0.05) PMOT at 24 and 48 h. CO3 did not protect spermatozoa cooled in the presence of seminal plasma. Therefore, in Experiment 4 we tested CO3 with seminal plasma present (control) and semen centrifuged and pellet resuspended in CO3 (CO3c), CO3 + EY (EYc), CO3 + GL (GLc) and CO3 + EY + GL (EY + GLc). Spermatozoa in CO3 had the lowest (P < 0.05) MOT and PMOT at all time periods, which suggested a detrimental interaction of this extender with seminal plasma.  相似文献   

6.
In the present study, the effect of three different containers in the preservation of dog chilled semen, during 24, 48 and 72h was evaluated. Weekly sperm pools of different dogs were obtained, during 10 consecutive weeks. Semen samples were diluted in egg-yolk-Tris-fructose extender and stored in a Styrofoam box, a common Thermos flask and an Equitainer. Progressive motility, morphology and sperm membrane integrity were examined in semen aliquots taken daily from each container during the 3 days of storage. Additionally, integrity of the acrosome and sperm plasma membranes, determined by PI/Fitc-PSA staining was assessed at 48 and 72h of storage. At 24h no differences were observed between the three containers for the evaluated parameters. At 48h samples kept in the Equitainer presented a higher progressive motility than samples kept in the Thermos. At 72h, progressive motility was higher in the Equitainer than in the other two containers. Only samples kept in the Equitainer maintained similar levels of progressive motility between 24 and 72h. Membrane integrity assessed by eosin-nigrosin deteriorated over the 72h period, whereas functional membrane integrity determined by the hypoosmotic swelling test was independently affected by type of container (the Equitainer) kept a higher percentage of sperm cells with intact membrane) and time of storage (a decrease of membrane integrity between 24 to 72h). Staining with PI-Fitc-PSA allowed the detection of differences between containers but not between the two studied storage periods (48 and 72h). The results indicated that the use of the Equitainer is preferable when transporting chilled dog semen for more than 48h.  相似文献   

7.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

8.
Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa   总被引:2,自引:0,他引:2  
This study investigated effects of bacteria from the genital tract of horses and the effect of gentamicin in semen extender on spermatozoal function in cooled-stored stallion semen. Semen was collected from healthy stallions and processed with a milk-based extender with or without gentamicin (1g/l). Pseudomonas (Ps.) aeruginosa, Staphylococcus (St.) aureus, Streptococcus (Sc.) equi subsp. equi (Sc. equi), Sc. equi subsp. zooepidemicus (Sc. zooepidemicus), Sc. dysgalactiae subsp. equisimilis (Sc. equisimilis) or culture medium alone (control) were added. Immediately after addition of bacteria and after storage at 5 degrees C for 24, 48 and 72h, motility, velocity and membrane integrity of diluted semen were determined with a CASA system. After 24h, semen with Ps. aeruginosa and Sc. equisimilis showed significantly lower motility and velocity compared to all other groups; after 72h these differences still existed for Ps. aeruginosa (p<0.05). The percentage of membrane-intact spermatozoa was significantly lower after 24h of storage in spermatozoa incubated with Sc. equisimilis and after 72h with Sc. equisimilis and Ps. aeruginosa. Addition of gentamicin to extender resulted in decreased motility and velocity in semen without addition of bacteria and did not improve motility parameters in semen with bacteria added. In conclusion, certain bacteria may have detrimental effects on semen quality during cooled-storage. These effects are not reduced by addition of gentamicin. Gentamicin can negatively affect spermatozoal function in extended semen during cooled-storage and therefore, optimal concentrations have to be tested for the respective extender medium.  相似文献   

9.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

10.
The objective of this study was to determine if centrifugation and partial removal of seminal plasma would improve spermatozoal motility in semen from stallions whose whole ejaculates have poor tolerance to cooling and storage. Stallions were divided into two groups (n = 5/group) based on the ability of their extended semen to maintain spermatozoal motility after cooling and storage. Group 1 stallions ("good coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by < or = 30% of progressive motility prior to storage. Group 2 stallions ("poor coolers") produced semen in which progressive spermatozoal motility after 24 h of cooling and storage was reduced by > or = 40% of progressive motility prior to storage. The sperm-rich portion of each ejaculate was divided into 4 aliquots. Two aliquots underwent standard processing for cooled transported semen and were examined after 24 and 48 h of cooling and storage in an Equitainer. The remaining two aliquots were diluted 1:1 with semen extender, then centrifuged at 400 x g for 12 min at room temperature. After centrifugation, approximately 90% of the seminal plasma was removed, and the sperm pellet was resuspended in extender to a final concentration of 25 to 50 x 10(6) sperm/mL. These aliquots were then packaged as for the non-centrifuged aliquots and examined after 24 and 48 h of storage. The spermatozoal motion characteristics in fresh semen and after 24 and 48 h of cooling and storage was determined via computer-assisted semen analysis. Centrifugation and partial removal of seminal plasma increased the percentage of progressively motile spermatozoa and limited the reduction in progressive spermatozoal motility of "poor cooling" stallions after 48 h of cooling and storage. Results of this study indicate that centrifugation and partial removal of seminal plasma is beneficial for stallions whose ejaculates have poor tolerance to cooling and storage with routine semen dilution and packaging techniques, especially if the semen is stored for > 24 h.  相似文献   

11.
Three experiments were conducted to evaluate the effects of egg yolk and(or) glycerol added to a nonfat dried skim milk-glucose (NDSMG) extender on motion characteristics and fertility of stallion spermatozoa. In Experiment 1, ejaculates from each of 8 stallions were exposed to each of 4 extender treatments: 1) NDSMG, 2) NDSMG + 4% egg yolk (EY), 3) NDSMG + 4% glycerol (GL), and 4) NDSMG + 4% egg yolk + 4% glycerol (EY + GL). Samples were cooled at -0.7 degrees C/min from 37 to 20 degrees C; subsamples were then cooled at -0.05 or -0.5 degrees C/min from 20 to 5 degrees C. Percentages of motile spermatozoa (MOT) and progressively motile spermatozoa (PMOT) were determined at 6, 24 and 48 h after initiation of cooling. There was no overall effect (P > 0.05) of cooling rate. PMOT was highest (P < 0.05) for spermatozoa extended in NDSMG + GL at 48 h. At 24 and 48 h, MOT and PMOT were lowest (P < 0.05) for spermatozoa extended in NDSMG + EY. In Experiment 2, ejaculates from 8 stallions were exposed to each of 4 treatments: 1) NDSMG, 2) NDSMG + EY, 3) semen centrifuged in NDSMG and resuspended in NDSMG, and 4) semen centrifuged in NDSMG and resuspended in NDSMG + EY. Samples were cooled from 20 to 5 degrees C at each of 2 rates (-0.05, -0.5 degrees C/min). A detrimental interaction between seminal plasma and egg yolk was noted for PMOT at 6 h and for both MOT and PMOT at > or = 24 h postcooling. Experiment 3 determined if egg yolk or glycerol affected fertility. The seminal treatments were 1) NDSMG, 2) NDSMG + EY with previous removal of seminal plasma, and 3) NDSMG + GL. All samples were cooled to 5 degrees C and stored 24 h before insemination. Embryo recovery rates 7 d after ovulation were lower for mares inseminated with spermatozoa cooled in NDSMG + EY (17%, 4/24) or NDSMG + GL (13%, 3/24) extenders, than semen cooled in NDSMG (50%, 12/24). We concluded that egg yolk (with seminal plasma removal) or glycerol added to NDSMG extender did not depress MOT or PMOT of cooled stallion spermatozoa but adversely affected fertility.  相似文献   

12.
Mannose is capable of decreasing bacterial attachment to the uterine mucosa in mares. Bacteria gain entry into the mare's uterus during breeding; therefore, a practical method to deliver mannose to the uterus is to incorporate it into semen extenders. The effect of mannose on spermatozoal motility and subsequent sperm fertilizing capability is unknown. The present study evaluated progressive spermatozoal motility in semen extender formulations incorporating mannose and assessed the fertility of mares inseminated with a mannose-containing semen extender. In Experiment 1, progressive spermatozoal motility in extender mixtures containing 0 mannose (control), 25, 37 or 49 mg/mL mannose was evaluated at 20 degrees C or 5 degrees C holding temperatures for 0, 12, 24 and 48 h post-dilution. Measures were repeated three times using five stallions of proven fertility. High concentrations of mannose in the extender affected progressive motility beyond the time and temperature effects noted in the controls. Extender containing only mannose sugar (49 mg/mL) displayed an immediate depression in progressive motility compared with controls (45.5% versus 62.9%, respectively; P<0.001). The 37 mg/mL mannose extender had a less dramatic decrease in motility (P<0.05) and only after storage at 5 degrees C for > or =12h (48.7% versus 58.0%, respectively). Extender with 25 mg/mL mannose performed no differently than the control formulation under all conditions. In Experiment 2, two groups of mares (n=11 each) were inseminated with 500 x 10(6) progressively motile spermatozoa extended in a traditional skim milk (control) extender or the 37 mg/mL mannose extender preparation. A single-cycle pregnancy rate of 72% was achieved by both groups. Present data suggest that a semen extender containing up to 37 mg/mL mannose could maintain motile spermatozoa for on-farm use and 25 mg/mL mannose concentrations preserved motility during long-term cooling. Likewise, sperm extended with up to 37 mg/mL of mannose had the same fertilizing capability as sperm in traditional extender mixtures.  相似文献   

13.
An experiment was conducted to determine whether cooled semen quality could be maintained for a longer interval by conducting daily centrifugation of extended semen, with resuspension of the sperm pellet in fresh extender. Semen treatments included SP10NC and SP50NC which contained 10 and 50% seminal plasma, respectively, were not centrifuged (NC), and were stored at 4 to 7 °C for 96 h. Treatments SP10C and SP50C contained 10 and 50% seminal plasma, respectively, but were centrifuged (C) after 24, 48, and 72 h of cooled storage, with daily resuspension in fresh extender containing 10% seminal plasma. Percent total sperm motility (TMOT) and progressively motile (PMOT) was reduced (P < 0.05) in the SP50NC treatment after 24, 48, 72, and 96 h of storage, and TMOT did not differ (P > 0.05) in the SP10C, SP50C, SP10NC groups after the same storage periods. The % COMP-αt did not differ (P > 0.05) among treatments at any time period. Percent membrane intact sperm (SMI) was reduced in SP50NC, as compared to SP10C at 48, 72, and 96 h (P < 0.05). Daily centrifugation and resuspension of sperm exposed to 50% seminal plasma for the first 24 h (SP50C) yielded similar TMOT, PMOT, VCL, SMI, % COMP-αt (P > 0.05) to Groups SP10NC and SP10C after 96 h of storage. Daily centrifugation and resuspension of cool-stored equine semen in fresh extender may be a method to increase sperm longevity.  相似文献   

14.
Katila T 《Theriogenology》1997,48(7):1217-1227
Handling procedures for semen to be used at the stud-farm and for transport are reviewed. Proper handling of semen is required throughout the entire process, from semen collection to the insemination of the mare. Semen shall not be exposed to mechanical damage, light, cold or heat. All equipment that comes in contact with semen must be warm, clean, dry and free from toxic residues. Skim-milk extender appears to be the medium best suited for the preservation of stallion semen during cooling and storage. When used immediately, semen is usually extended 1:1 (v:v), but for transport, concentrations of 25 to 100 x 10(6) spermatozoa/mL are recommended. The proportion of semen plasma should be reduced to < 20%. by centrifuging, by collecting only the first 3 sperm-rich fractions, or by substantially diluting of the ejaculate. The storage temperature can be between 20 to 15 degrees C, if shipment time is no more than 12 h; for longer storage, temperatures < 10 degrees C are recommended. Semen can be cooled rapidly from 35 to 19 degrees C. In the temperature zone between 19 and 8 degrees C, stallion spermatozoa are sensitive to cold shock, and the cooling rate should be slowed to 0.05 degrees C/min. Rapid cooling can be resumed below 8 degrees C. At low temperatures, removal of oxygen-rich air is beneficial for the survival of spermatozoa. The Equitainer transport container keeps a constant temperature of 5 degrees C for 48 h and is therefore recommended for transportation lasting over 24 h.  相似文献   

15.
Preserved stallion semen often has decreased spermatozoal motility and fertility that can vary significantly between individual stallions. It is not known whether the medium used for extending equine sperm contributes to these decreases by inducing premature capacitation during storage. If spermatozoa undergo capacitation or acrosome reaction prior to insemination, this could result in a diminished capacity to penetrate the cumulus mass and fertilize the egg. We hypothesized that skim milk-based semen extenders, similar to those used in cooled storage, stabilize sperm membranes and prolong sperm motility and longevity. However, this could decrease the efficiency of sperm to undergo subsequent capacitation in vivo. This study was designed to evaluate the effects from two media on sperm function. Spermatozoal motility was analyzed, intracellular calcium was measured, and the ability of sperm to undergo acrosome reaction was compared after incubation in a skim milk extender (SME) and Tyrode's medium containing albumin, lactate, and pyruvate (TALP) at 37 degrees C. Results suggest that the SME facilitated capacitation as detected by an increase in both intracellular calcium and acrosome reactions, and a decrease in motility, as compared to TALP. Our data support a shortened functional lifespan for equine sperm in skim milk extender, which indicates that further refinements in cooled semen preservation are required to improve fertility of transported equine semen.  相似文献   

16.
This study tested whether variable temperatures (from −0.5 to 15 °C) and air exposure could be used under laboratory and under field conditions to store stallion sperm diluted in extender INRA96 without loss of fertility. Experiment 1 (laboratory conditions) measured the effects of two 72 h storage conditions (5 °C with air vs. 15 °C without air). Experiment 2 (fixed field conditions) measured the effects of 22 h of storage without air in disposable containers maintained at four ambient temperatures (7 °C, 17 °C, 27 °C, 39 °C with semen at −0.5 °C to 3 °C, 4 °C to 7 °C, 8 °C to 10 °C, 12 °C to 15 °C, respectively). Per cycle pregnancy rate (PC) was measured after one artificial insemination (AI) in uterine body of 200 × 106 total spermatozoa, 7 h (Experiment 1) or 17 h (Experiment 2) before ovulation. In Experiment 1, PC was similar for both conditions (60% (n = 40 cycles) vs. 63% (n = 40), respectively, 5 stallions × 8 cycles). Only velocity VCL and ALH were slightly higher at 15 °C. In Experiment 2, PC was reduced when ambient temperature was low (semen at −0.5 °C to 3 °C; PC = 25%) rather than intermediate (semen at 4 °C to 7 °C; PC = 53%) or high (semen at 8 °C to 10 °C; PC = 50%) (4 stallions × 8 cycles) (P = 0.002). Sperm stored at −0.5 °C to 3 °C had lower acrosome integrity/responsiveness, similar membrane integrity (HOS test) and motilities, and higher VCL and ALH, than semen stored between 4 and 15 °C. These results demonstrate a wide tolerance of equine sperm to variable positive temperatures and air exposure for 22 h storage and more. However, temperatures close to 0 °C are detrimental for fertility.  相似文献   

17.
Two experiments were designed to evaluate cooling rates and storage temperatures for stallion spermatozoa extended in caprogen (CAP), Cornell University extender (CUE), heated skimmilk (SM) and a nonfat-dried milk solids glucose extender (NFDMS-glucose). In Experiment 1, each extender was evaluated in a separate but similar 4 × 4 × 6 factorial trial using two ejaculates from each of six stallions. Aliquots of 66 × 106 spermatozoa were transferred to each of 16 coded tubes and extended to 6 ml with SM, CAP, CUE or NFDMS-glucose. Four tubes of extended semen were either plunged into 5C water or cooled at a rate of ?1.0, ?0.5, or ?0.2C/min. Within each treatment, one tube of extended semen was maintained at 20C, 15C, 10C or 5C. Progressive spermatozoal motility was estimated immediately after dilution (0 h) and at 4, 8, 12, 24 and 36 h. Regardless of extender, all three slower cooling rates were superior (P<0.05) to plunging to 5C; storage temperatures of 20C and 15C were superior (P<0.05) for maintaining spermatozoal motility. Experiment 2 was designed so that all extenders could be evaluated simultaneously. Since CUE resulted in an immediate depression of spermatozoal motility, it was not evaluated further. Semen was collected from 12 stallions and each ejaculate was extended in SM, CAP and NFDMS-glucose. Semen was cooled at ?1.0C/min and maintained at either 20C or 15C. Spermatozoal motility was assessed as in Experiment 1. Overall, the CAP and NFDMS-glucose extenders were superior (P<0.05) to SM for maintenance of spermatozoal motility. Storage at 20C or 15C resulted in similar (P>0.05) spermatozoal motility. Two fertility trials compared the use of SM and NFDMS-glucose extenders. Embryo recovery 6 days post-ovulation (Experiment 3) and pregnancy rate 50 days postestrus (Experiment 4) was similar (P>0.05) for mares inseminated with spermatozoa extended in SM or NFDMS-glucose.  相似文献   

18.
Experiments were conducted to evaluate two extenders (egg-yolk Tris and egg-yolk lactose), varying concentrations of two cryopreservatives (glycerol and dimethyl sulfoxide), and rates for cooling to 5 degrees C, cooling from 5 to -100 degrees C, and warming for canine spermatozoa packaged in 0.5-ml French straws. At optimal concentrations of glycerol, egg-yolk Tris extender was superior to egg-yolk lactose in preserving spermatozoal motility. Addition of dimethyl sulfoxide, alone or in combination with glycerol in either extender, was not beneficial to spermatozoal survival after thawing. Canine spermatozoa withstood a range of cooling and equilibration times with no detrimental effect on spermatozoal motility prior to freezing. However, there were differences in spermatozoal motility immediately after thawing; these differences were variable, resulting in a cooling time by equilibration time interaction. Spermatozoal motility after thawing was best preserved by freezing in egg-yolk Tris extender containing 2-4% glycerol, using a moderate rate of cooling from 5 to -100 degrees C (-5 degrees C/min from 5 to -15 degrees C, then -20 degrees C/min from -15 to -100 degrees C). Three of 12 bitches inseminated intravaginally with semen frozen using this protocol became pregnant.  相似文献   

19.
Braun J  Sakai M  Hochi S  Oguri N 《Theriogenology》1994,41(4):809-818
The suitability of ejaculated and epididymal stallion spermatozoa for cooled storage (5 degrees C) and cryopreservation was examined in 5 ejaculates from each of 6 stallions and in spermatozoa recovered from the cauda epididymidis after castration of these stallions. The percentage of progressively motile spermatozoa, examined by subjective estimation (cooled samples) or by computerized analysis (frozen-thawed samples), was used as parameter. In ejaculated semen samples containing 5 and 25% seminal plasma in a skim milk glucose extender, the lower amount of seminal plasma supported spermatozoal motility significantly better throughout storage at 5 degrees C. Addition of 5 or 25% seminal plasma to perfused epididymal spermatozoa (0% seminal plasma) resulted in a significant stimulation of spermatozoal motility by 25% seminal plasma at 0 h (P<0.05) and to a lesser extent at 24 and 48 h. Post-thaw motility of ejaculated as well as epididymal spermatozoa was not influenced by slow cooling to 15 degrees or 5 degrees C with or without glycerol prior to rapid freezing in liquid nitrogen vapor. During cooled storage, seminal plasma had a stimulatory effect on epididymal spermatozoa and depressed motility in ejaculated spermatozoa. Results on cryopreservation indicate that freezability of equine spermatozoa is already determined when spermatozoa leave the tail of the epididymis.  相似文献   

20.
This study was designed to evaluate the possible benefits of adding gelatin to a standard milk extender, for solid storage of sheep semen at 15 degrees C. Solid storage was assessed in terms of effects on sperm motility and membrane integrity up to 2 days (Study 1), and on in vitro penetration capacity after storage for 24h (Study 2). In both studies, semen was diluted in CONTROL (standard milk extender) and GEL (1.5 g gelatin/100ml extender) diluents to a final concentration of 400 x 10(6)sperm/ml. In Study 1, semen samples were stored at 15 degrees C, and sperm quality variables analyzed after 2, 24 and 48 h of storage. Motility and viability values were significantly lowered using the liquid compared to the gel extender for all storage periods, except for motility after 2h of storage, whose values were similar. After 2h of incubation at 37 degrees C, motile cell percentages and membrane integrity were significantly lower in the CONTROL group than in the GEL group for all storage periods. In Study 2, in vitro matured lamb oocytes were randomly divided into three groups and fertilized with CONTROL diluted semen stored for 2h or 24h, or with GEL diluted semen stored for 24h. After co-incubation, oocytes were evaluated for signs of penetration. Storage of semen in the GEL diluent for 24h gave rise to increased in vitro fertilization rates in comparison with the CONTROL diluent. Our findings indicate that the solid storage at 15 degrees C of ram spermatozoa by adding gelatin to the extender leads to improved survival and in vitro penetrating ability over the use of the normal liquid extender. A solid diluent could thus be a useful option for the preservation of fresh ovine semen for extended periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号