首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The tazarotene-induced gene 1 (TIG1) is a putative tumor suppressor gene. We have recently demonstrated both TIG1A and TIG1B isoforms inhibited cell growth and induced the expression of G protein-coupled receptor kinase 5 (GRK5) in colon cancer cells. Because elevated prostaglandin E2 (PGE2) signaling plays a significant role in colorectal carcinogenesis, the objective of this study was to explore the effect of TIG1 on PGE2-induced cellular proliferation and signaling in colon cancer cells.  相似文献   

2.

Background  

Perinatal brain injury is the leading cause of subsequent neurological disability in both term and preterm baby. Glutamate excitotoxicity is one of the major factors involved in perinatal hypoxic-ischemic encephalopathy (HIE). Glutamate transporter GLT1, expressed mainly in mature astrocytes, is the major glutamate transporter in the brain. HIE induced excessive glutamate release which is not reuptaked by immature astrocytes may induce neuronal damage. Compounds, such as ceftriaxone, that enhance the expression of GLT1 may exert neuroprotective effect in HIE.  相似文献   

3.

Background  

Angiotensin II (Ang II) signaling occurs via two major receptors which activate non-receptor tyrosin kinases that then interact with protein tyrosin-phosphatases (PTPs) to regulate cell function. SHP-2 is one such important PTP that also functions as an adaptor to promote downstream signaling pathway. Its role in Ang II signaling remains to be clarified.  相似文献   

4.

Introduction  

Programmed cell death of intervertebral disc (IVD) cells plays an important role in IVD degeneration, but the role of autophagy, a closely related cell death event, in IVD cells has not been documented. The current study was designed to investigate the effect of interleukin (IL)-1β on the occurrence of autophagy of rat annulus fibrosus (AF) cells and the interrelationship between autophagy and apoptosis.  相似文献   

5.
6.
Upregulated expression of stanniocalcin-1 during adipogenesis   总被引:2,自引:0,他引:2  
Stanniocalcin-1 (STC-1) is a 56-kDa homodimeric protein originally discovered in bony fish, where it protects against toxic levels of environmental calcium by lowering the uptake of calcium via the gills and by increasing the reabsorption of phosphate in the kidney. Here we report expression of STC-1 in mammalian white and brown fat tissue. Coexpression of STC-1 and perilipin confirmed the presence of STC-1 in mature fat cells. Neoplastic adipocytes in well-differentiated liposarcomas also stained for STC-1, while the frequency of STC-1-positive cells was lower in high-grade liposarcomas. The kinetics of STC-1 expression during adipogenesis was investigated in 3T3-LI cells, which can be induced to adipocyte differentiation. Untreated 3T3-L1 cells displayed negligible amounts of STC-1, whereas 3T3-L1 cells, treated with an adipogenic cocktail, upregulated the expression of STC-1 concomitantly with acquisition of the adipocytic phenotype. We have previously reported a high expression of STC-1 in postmitotically differentiated neurons and megakaryocytes. We have also shown that expression of STC-1 confers increased resistance to hypoxic and oxidative stress in neurons. Given this, our findings suggest that STC-1, also in terminally differentiated adipocytes, may function as a "survival factor", which contributes to the maintenance of the integrity of mature adipose tissue.  相似文献   

7.
8.

Background

Galectin-3 (gal-3), a member of the β-galactoside-binding animal lectins, is involved in the recruitment, activation and removal of neutrophils. Neutrophilic asthma is characterized by a persistent elevation of airway neutrophils and impaired efferocytosis. We hypothesized that sputum gal-3 would be reduced in neutrophilic asthma and the expression of gal-3 would be associated with other markers of neutrophilic inflammation.

Methods

Adults with asthma (n = 80) underwent a sputum induction following clinical assessment and blood collection. Sputum was dispersed for a differential cell count and ELISA assessment of gal-3, gal-3 binding protein (BP), interleukin (IL)-1β, IL-1 receptor antagonist (RA), IL-8 and IL-6. Gal-3 and gal-3BP immunoreactivity were assessed in mixed sputum cells.

Results

Sputum gal-3 (median, (q1,q3)) was significantly reduced in neutrophilic asthma (183 ng/mL (91,287)) compared with eosinophilic (293 ng/mL (188,471), p = 0.021) and paucigranulocytic asthma (399 ng/mL (213,514), p = 0.004). The gal-3/gal-3BP ratio and IL-1RA/IL-1β ratio were significantly reduced, while gal-3BP and IL-1β were significantly elevated in neutrophilic asthma compared with eosinophilic and paucigranulocytic asthma.

Conclusion

Patients with neutrophilic asthma have impairment in anti-inflammatory ratio of gal-3/gal-3BP and IL-1RA/IL-1β which provides a further framework for exploration into pathologic mechanisms of asthma phenotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0163-5) contains supplementary material, which is available to authorized users.  相似文献   

9.

Background  

Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature.  相似文献   

10.
11.
12.

Background

Roxithromycin (RXM) has been widely used in asthma treatment; however, the mechanism has not been fully understood. The aim of our study was to investigate the underlying mechanism of RXM treatment in mediating the effect of transforming growth factor (TGF)-β1 on airway smooth muscle cells (ASMCs) proliferation and caveolinn-1 expression.

Methods

Firstly, the rat ovalbumin (OVA) model was built according to the previous papers. Rat ASMCs were prepared and cultured, and then TGF-β1 production in ASMCs was measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the proliferation of ASMCs was determined using cell counting kit (CCK-8) assay. Additionally, the expressions of caveolin-1, phosphorylated-ERK1/2 (p-ERK1/2) and phosphorylated–AKT (p-AKT) in ASMCs treated with or without PD98059 (an ERK1/2 inhibitor), wortannin (a PI3K inhibitor), β-cyclodextrin (β-CD) and RXM were measured by Western blot. Finally, data were evaluated using t–test or one-way ANOVA, and then a P value < 0.05 was set as a threshold.

Results

Compared with normal control, TGF-β1 secretion was significantly increased in asthmatic ASMCs; meanwhile, TGF-β1 promoted ASMCs proliferation (P < 0.05). However, ASMCs proliferation was remarkably inhibited by RXM, β-CD, PD98059 and wortmannin (P < 0.05). Moreover, the expressions of p-ERK1/2 and p-AKT were increased and peaked at 20 min after TGF-β1 stimulation, and then suppressed by RXM. Further, caveolin-1 level was down-regulated by TGF-β1 and up-regulated by inhibitors and RXM.

Conclusion

Our findings demonstrate that RXM treatment inhibits TGF-β1-induced activation of ERK and AKT and down-regulation of caveolin-1, which may be the potential mechanism of RXM protection from chronic inflammatory diseases, including bronchial asthma.  相似文献   

13.

Background

Pin1 promotes oncogenesis by regulating multiple oncogenic signaling. In this study, we investigated the involvement of Pin1 in tumor progression and in the prognosis of human esophageal squamous cell carcinoma (ESCC).

Results

We observed that proliferation, clonogenicity and tumorigenesis of CE81T cells were inhibited by Pin1 knockdown. We next analyzed Pin1 expression in clinical ESCC specimens. When compared to the corresponding non-tumor part, Pin1 protein and mRNA levels in tumor part were higher in 84% and 62% patients, respectively. By immunohistochemistry, we identified that high Pin1 expression was associated with higher primary tumor stage (p = 0.035), higher overall cancer stage (p = 0.047) and poor overall survival (p < 0.001). Furthermore, the association between expression of Pin1 and levels of β-catenin and cyclin D in cell line and clinical specimens was evaluated. β-catenin and cyclin D1 were decreased in CE81T cells with Pin1 knockdown. Cyclin D1 level correlated with Pin1 expression in clinical ESCC specimens.

Conclusions

Pin1 upregulation was associated with advanced stage and poor prognosis of ESCC. Pin1 knockdown inhibited aggressiveness of ESCC cells. β-catenin and cyclin D1 were positively regulated by Pin1. These results indicated that targeting Pin1 pathway could represent a potential modality for treating ESCC.  相似文献   

14.

Background

Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD), a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity.

Results

Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1.

Conclusions

This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxosceles venom agents.  相似文献   

15.

Background

Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM)17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis.

Methods

We studied the effects of cigarette smoke extract (CSE) and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs) from COPD patients, healthy smokers and non-smokers.

Results

We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP)-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding) was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups.

Conclusions

Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.  相似文献   

16.

Background  

Chronic obstructive pulmonary disease (COPD) is characterized by a chronic inflammatory process, in which the pro-inflammatory cytokine Tumor Necrosis Factor (TNF)-α is considered to play a role. In the present study the putative involvement of TNF-α gene polymorphisms in pathogenesis of COPD was studied by analysis of four TNF-α gene polymorphisms in a Caucasian COPD population.  相似文献   

17.

Aims/hypotheses

To examine hepatic expression of cholesterol-trafficking proteins, mitochondrial StarD1 and endosomal StarD3, and their relationship with dyslipidaemia and steatosis in Zucker (fa/fa) genetically obese rats, and to explore their functional role in lipid metabolism in rat McArdle RH-7777 hepatoma cells.

Methods

Expression of StarD1 and StarD3 in rat liver and hepatoma samples were determined by Q-PCR and/or immunoblotting; lipid mass by colorimetric assays; radiolabelled precursors were utilised to measure lipid synthesis and secretion, and lipidation of exogenous apolipoprotein A-I.

Results

Hepatic expression of StarD3 protein was repressed by genetic obesity in (fa/fa) Zucker rats, compared with lean (Fa/?) controls, suggesting a link with storage or export of lipids from the liver. Overexpression of StarD1 and StarD3, and knockdown of StarD3, in rat hepatoma cells, revealed differential effects on lipid metabolism. Overexpression of StarD1 increased utilisation of exogenous (preformed) fatty acids for triacylglycerol synthesis and secretion, but impacted minimally on cholesterol homeostasis. By contrast, overexpression of StarD3 increased lipidation of exogenous apoA-I, and facilitated de novo biosynthetic pathways for neutral lipids, potentiating triacylglycerol accumulation but possibly offering protection against lipotoxicity. Finally, StarD3 overexpression altered expression of genes which impact variously on hepatic insulin resistance, inducing Ppargcla, Cyp2e1, Nr1h4, G6pc and Irs1, and repressing expression of Scl2a1, Igfbp1, Casp3 and Serpine 1.

Conclusions/interpretation

Targeting StarD3 may increase circulating levels of HDL and protect the liver against lipotoxicity; loss of hepatic expression of this protein, induced by genetic obesity, may contribute to the pathogenesis of dyslipidaemia and steatosis.  相似文献   

18.
19.

Background

Idiopathic pulmonary fibrosis (IPF) is a progressive disease of insidious onset, and is responsible for up to 30,000 deaths per year in the U.S. Excessive production of extracellular matrix by myofibroblasts has been shown to be an important pathological feature in IPF. TGF-β1 is expressed in fibrotic lung and promotes fibroblast to myofibroblast differentiation (FMD) as well as matrix deposition.

Methods

To identify the mechanism of Arsenic trioxide’s (ATO)’s anti-fibrotic effect in vitro, normal human lung fibroblasts (NHLFs) were treated with ATO for 24 hours and were then exposed to TGF-β1 (1 ng/ml) before harvesting at multiple time points. To investigate whether ATO is able to alleviate lung fibrosis in vivo, C57BL/6 mice were administered bleomycin by oropharyngeal aspiration and ATO was injected intraperitoneally daily for 14 days. Quantitative real-time PCR, western blotting, and immunofluorescent staining were used to assess the expression of fibrotic markers such as α-smooth muscle actin (α-SMA) and α-1 type I collagen.

Results

Treatment of NHLFs with ATO at very low concentrations (10-20nM) inhibits TGF-β1-induced α-smooth muscle actin (α-SMA) and α-1 type I collagen mRNA and protein expression. ATO also diminishes the TGF-β1-mediated contractile response in NHLFs. ATO’s down-regulation of profibrotic molecules is associated with inhibition of Akt, as well as Smad2/Smad3 phosphorylation. TGF-β1-induced H2O2 and NOX-4 mRNA expression are also blocked by ATO. ATO-mediated reduction in Smad3 phosphorylation correlated with a reduction of promyelocytic leukemia (PML) nuclear bodies and PML protein expression. PML-/- mouse embryonic fibroblasts (MEFs) showed decreased fibronectin and PAI-1 expression in response to TGF-β1. Daily intraperitoneal injection of ATO (1 mg/kg) in C57BL/6 mice inhibits bleomycin induced lung α-1 type I collagen mRNA and protein expression.

Conclusions

In summary, these data indicate that low concentrations of ATO inhibit TGF-β1-induced fibroblast to myofibroblast differentiation and decreases bleomycin induced pulmonary fibrosis.  相似文献   

20.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号