首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type II methanotrophs produce polyhydroxybutyrate (PHB), while Type I methanotrophs do not. A laboratory-scale fluidized bed reactor was initially inoculated with a Type II Methylocystis-like dominated culture. At elevated levels of dissolved oxygen (DO, 9 mg/L), pH of 6.2–6.5 with nitrate as the N-source, a Methylobacter-like Type I methanotroph became dominant within the biofilms which did not produce PHB. A shift to biofilms capable of PHB production was achieved by re-inoculating with Type II Methylosinus culture, providing dissolved N2 as the N-source, and maintaining a low influent DO (2.0 mg/L). The resulting biofilms contained both Types I and II methanotrophs. Batch tests indicated that biofilm samples grown with N2 became dominated by Type II methanotrophs and produced PHB. Enrichments with nitrate or ammonium were dominated by Type I methanotrophs without PHB production capability. The key selection factors favoring Type II were N2 as N-source and low DO.  相似文献   

2.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

3.
Two new methane-oxidizing bacteria have been isolated from seawater samples from Plymouth Sound. These marine methanotrophs have an obligate requirement for NaCl and exhibit many properties of typical Type I methanotrophs previously isolated from freshwater environments. However, they are different from all other methanotrophs thus far described in that they failed to grow on all solid media tested. The nitrogen metabolism of both strains was investigated. They were not N2-fixers nor would they use ammonia as nitrogen source. They appeared to utilize the glutamate dehydrogenase pathway for the assimilation of ammonia under all growth conditions tested.  相似文献   

4.
Some methane-oxidizing bacteria (methanotrophs) are known to be capable of expressing nitrogenase and utilizing N2 as a nitrogen source. However, no sequences are available for nif genes in these strains, and the known nitrogen-fixing methanotrophs are confined mainly to a few genera. The purpose of this work was to assess the nitrogen-fixing capabilities of a variety of methanotroph strains. nifH gene fragments from four type I methanotrophs and seven type II methanotrophs were PCR amplified and sequenced. Nitrogenase activity was confirmed in selected type I and type II strains by acetylene reduction. Activities ranged from 0.4 to 3.3 nmol/min/mg of protein. Sequence analysis shows that the nifH sequences from the type I and type II strains cluster with nifH sequences from other gamma proteobacteria and alpha proteobacteria, respectively. The translated nifH sequences from three Methylomonas strains show high identity (95 to 99%) to several published translated environmental nifH sequences PCR amplified from rice roots and a freshwater lake. The translated nifH sequences from the type II strains show high identity (94 to 99%) to published translated nifH sequences from a variety of environments, including rice roots, a freshwater lake, an oligotrophic ocean, and forest soil. These results provide evidence for nitrogen fixation in a broad range of methanotrophs and suggest that nitrogen-fixing methanotrophs may be widespread and important in the nitrogen cycling of many environments.  相似文献   

5.
A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with (13)C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of (13)C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in (13)C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs.  相似文献   

6.
Competition experiments were performed in a continuous-flow reactor using Methylosinus trichosporium OB3b, a type II methanotroph, and Methylomonas albus BG8, a type I methanotroph. The experiments were designed to establish conditions under which type II methanotrophs, which have significant cometabolic potential, prevail over type I strains. The primary determinants of species selection were dissolved methane, copper, and nitrate concentrations. Dissolved oxygen and methanol concentrations played secondary roles. M. trichosporium OB3b proved dominant under copper and nitratelimited conditions. The ratio of M. trichosporium to M. albus in the reactor increased ten-fold in less than 100 hours following the removal of copper from the reactor feed. Numbers of M. albus declined to levels that were below detection limits (<106/ml) under nitrogen-limited conditions. In the latter experiment, the competitive success of M. trichosporiumdepended on the maintenance of an ambient dissolved oxygen level below about 7.5 × 10–5 M, or 30% of saturation with air. The ability of M. trichosporium to express soluble methane monooxygenase under copper limitation and nitrogenase under nitrate limitation was very significant. M. albus predominated under methane-limited conditions, especially when low levels of methanol were simultaneously added with methane to the reactor. The results imply that nitrogen limitation can be used to select for type II strains such as M. trichosporium OB3b. Offprint requests to: Pierre Servais  相似文献   

7.
8.
Rice roots select for type I methanotrophs in rice field soil   总被引:1,自引:0,他引:1  
Methanotrophs are an important regulator for reducing methane (CH4) emissions from rice field soils. The type I group of the proteobacterial methanotrophs are generally favored at low CH4 concentration and high O2 availability, while the type II group lives better under high CH4 and limiting O2 conditions. Such physiological differences are possibly reflected in their ecological preferences. In the present study, methanotrophic compositions were compared between rice-planted soil and non-planted soil and between the rhizosphere and rice roots by using terminal restriction fragment length polymorphism (T-RFLP) analysis of particulate methane monooxygenase (pmoA) genes. In addition, the effects of rice variety and nitrogen fertilizer were evaluated. The results showed that the terminal restriction fragments (T-RFs), which were characteristic for type I methanotrophs, substantially increased in the rhizosphere and on the roots compared with non-planted soils. Furthermore, the relative abundances of the type I methanotroph T-RFs were greater on roots than in the rhizosphere. Of type I methanotrophs, the 79 bp T-RF, which was characteristic for an unknown group or Methylococcus/Methylocaldum, markedly increased in field samples, while the 437 bp, which possibly represented Methylomonas, dominated in microcosm samples. These results suggested that type I methanotrophs were enriched or selected for by rice roots compared to type II methanotrophs. However, the members of type I methanotrophs are dynamic and sensitive to environmental change. Rice planting appeared to increase the copy number of pmoA genes relative to the non-planted soils. However, neither the rice variety nor the N fertilizer significantly influenced the dynamics of the methanotrophic community.  相似文献   

9.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed remoteness of nifH genes sequences of methanotroph types I and II. At the same time, close relationship was found between nifH of type I methanotrophs and representatives of gamma-proteobacteria and between nifH genes of type II methanotrophs and representatives of alpha-proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception of Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

10.
The methane oxidation potential of active layer profiles of permafrost soils from the Lena Delta, Siberia, was studied with regard to its respond to temperature, and abundance and distribution of type I and type II methanotrophs. Our results indicate vertical shifts within the optimal methane oxidation temperature and within the distribution of type I and type II methanotrophs. In the upper active layer, maximum methane oxidation potentials were detected at 21 degrees C. Deep active layer zones that are constantly exposed to temperatures below 2 degrees C showed a maximum potential to oxidize methane at 4 degrees C. Our results indicate a dominance of psychrophilic methanotrophs close to the permafrost table. Type I methanotrophs dominated throughout the active layer profiles but their number strongly fluctuated with depth. In contrast, type II methanotrophs were constantly abundant through the whole active layer and displaced type I methanotrophs close to the permafrost table. No correlation between in situ temperatures and the distribution of type I and type II methanotrophs was found. However, the distribution of type I and type II methanotrophs correlated significantly with in situ methane concentrations. Beside vertical fluctuations, the abundance of methane oxidizers also fluctuated according to different geomorphic units. Similar methanotroph cell counts were detected in samples of a flood plain and a polygon rim, whereas cell counts in samples of a polygon centre were up to 100 times lower.  相似文献   

11.
Using a previously developed primer system, nifH gene fragments 450 nucleotides long were amplified, cloned, and sequenced for representatives of nitrogen-fixing methanotrophic bacteria of the genera Methylococcus, Methylocystis, and Methylosinus. Fragments of nifH genes were also detected and sequenced in representatives of the genera Methylomonas and Methylobacter, which were not considered diazotrophs until recently. Phylogenetic analysis revealed the remoteness of nifH gene sequences of methanotroph types I and II. At the same time, a close relationship was found between nifH of type I methanotrophs and representatives of -proteobacteria and between nifH genes of type II methanotrophs and representatives of -proteobacteria. The results obtained in this study are in good accordance with the data of phylogenetic analysis based on 16S rRNA sequence comparison with the only exception being Methylococcus capsulatus strains, whose nifH genes proved to be closely related to nifH genes of Methylocystis and Methylosinus representatives. Our findings extend the database of primary sequences of nifH genes and allow the contribution of methanotrophs to the process of nitrogen fixation to be estimated.  相似文献   

12.
Methanotrophic communities were studied in several periodically water-saturated gleyic soils. When sampled, each soil had an oxic upper layer and consumed methane from the atmosphere (at 1.75 ppmv). In most gleyic soils the K(m(app)) values for methane were between 70 and 800 ppmv. These are higher than most values observed in dry upland soils, but lower than those measured in wetlands. Based on cultivation-independent retrieval of the pmoA-gene and quantification of partial pmoA gene sequences, type II (Alphaproteobacteria) methanotrophs of the genus Methylocystis spp. were abundant (> 10(7) pmoA target molecules per gram of dry soil). Type I (Gammaproteobacteria) methanotrophs related to the genera Methylobacter and Methylocaldum/Methylococcus were detected in some soils. Six pmoA sequence types not closely related to sequences from cultivated methanotrophs were detected as well, indicating that diverse uncultivated methanotrophs were present. Three Gleysols were incubated under different mixing ratios of (13)C-labelled methane to examine (13)C incorporation into phospholipid fatty acids (PLFAs). Phospholipid fatty acids typical of type II methanotrophs, 16:0 and 18:1omega7c, were labelled with (13)C in all soils after incubation under an atmosphere containing 30 ppmv of methane. Incubation under 500 ppmv of methane resulted in labelling of additional PLFAs besides 16:0 and 18:1omega7c, suggesting that the composition of the active methanotrophic community changed in response to increased methane supply. In two soils, 16:1 PLFAs typical of type I methanotrophs were strongly labelled after incubation under the high methane mixing ratio only. Type II methanotrophs are most likely responsible for atmospheric methane uptake in these soils, while type I methanotrophs become active when methane is produced in the soil.  相似文献   

13.
The aim of this study was to quantitatively analyse methanotrophs in two laboratory landfill biofilters at different biofilter depths and at temperatures which mimicked the boreal climatic conditions. Both biofilters were dominated by type I methanotrophs. The biofilter depth profiles showed that type I methanotrophs occurred in the upper layer, where relatively high O(2) and low CH(4) concentrations were present, whereas type II methanotrophs were mostly distributed in the zone with high CH(4) and low O(2) concentrations. The number of type I methanotrophic cells declined when the temperature was raised from 15 degrees C to 23 degrees C, but increased when lowered to 5 degrees C. A slight decrease in type II methanotrophs was also observed when the temperature was raised from 15 degrees C to 23 degrees C, whereas cell numbers remained constant when lowered to 5 degrees C. The results indicated that low temperature conditions favored both type I and type II methanotrophs in the biofilters.  相似文献   

14.
Three stable methane-oxidizing enrichment cultures, SB26, SB31, and SB31A were analyzed by transmission electron microscopy and by serological and molecular techniques. Electron microscopy revealed the presence of both type I and type II methanotrophs in SB31 and SB31A enrichments; only type II methanotrophs were found in SB26 enrichment. Methylosinus trichosporium was detected in all three enrichments by the application of species-specific antibodies. Additionally, Methylocystis echinoides was found in SB26 culture; Methylococcus capsulatus, in SB31 and SB31A; and Methylomonas methanica, in SB31. The analysis with pmoA and nifH gene sequences as phylogenetic markers revealed the presence of Methylosinus/Methylocystis group in all communities. Moreover, the analysis of pmoA sequences revealed the presence of Methylomonas in SB31. Methylocella was detected in SB31 and SB31A enrichments only by nifH analysis. It was concluded that the simultaneous application of different approaches reveals more reliable information on the diversity of methanotrophs.  相似文献   

15.
Nichols  Peter D.  White  D. C. 《Hydrobiologia》1989,176(1):369-377
The prokarotic, endogenous storage polymer poly--hydroxybutyrate (PHB) accumulated in soil from a methane-enriched, halogenated hydrocarbon-degrading soil column. Based on phospholipid ester-linked fatty acid (PLFA) profiles, this mocrocosm has been previously reported to be significantly enhanced in type II methanotrophs. Two strains analysed of the type II methanotroph Methylobacterium organophilum were found to contain PHB, with PHB/PLFA ratios similar to those determined for the methane-enriched soil column, suggesting that methanotrophic bacteria enriched in the methane-amended column produced PHB. Control soil and sodium azide-inhibited material, in which methanotroph markers were below detection, did not contain PHB. Biochemical assays, based on the differences observed, can be used to monitor shifts in microbial biomass, community structure and nutritional status of systems used to model microbial biotransformation processes. Further manipulative experiments with pure methanotrophic bacteria will increase our understanding of the mechanism by which PHB is produced. This study illustrates, however, that biochemical procedures have the potential to monitor the stimulated populations of a native soil microbial community capable of degrading pollutants. Such data may ultimately provide information to assist in the selection and optimization of favorable conditions for the adaption of pollutant biotransformation processes to aquifers.  相似文献   

16.
Landfills are large sources of CH4, but a considerable amount of CH4 can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N2O production. To examine the effects of nitrogen and a selective inhibitor on CH4 oxidation and N2O production in situ, 0.5 M of NH4Cl and 0.25 M of KNO3, with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N2O production but had no effect on CH4 oxidation. The addition of phenylacetylene stimulated CH4 oxidation while reducing N2O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N2O production by selectively inhibiting AOAs and/or type II methanotrophs.  相似文献   

17.
Biofilters operated for the microbial oxidation of landfill methane at two sites in Northern Germany were analysed for the composition of their methanotrophic community by means of diagnostic microarray targeting the pmoA gene of methanotrophs. The gas emitted from site Francop (FR) contained the typical principal components (CH4, CO2, N2) only, while the gas at the second site Müggenburger Strasse (MU) was additionally charged with non-methane volatile organic compounds (NMVOCs). Methane oxidation activity measured at 22 degrees C varied between 7 and 103 microg CH4 (g dw)(-1) h(-1) at site FR and between 0.9 and 21 microg CH4 (g dw)(-1) h(-1) at site MU, depending on the depth considered. The calculated size of the active methanotrophic population varied between 3 x 10(9) and 5 x 10(11) cells (g dw)(-1) for biofilter FR and 4 x 10(8) to 1 x 10(10) cells (g dw)(-1) for biofilter MU. The methanotrophic community in both biofilters as well as the methanotrophs present in the landfill gas at site FR was strongly dominated by type II organisms, presumably as a result of high methane loads, low copper concentration and low nitrogen availability. Within each biofilter, community composition differed markedly with depth, reflecting either the different conditions of diffusive oxygen supply or the properties of the two layers of materials used in the filters or both. The two biofilter communities differed significantly. Type I methanotrophs were detected in biofilter FR but not in biofilter MU. The type II community in biofilter FR was dominated by Methylocystis species, whereas the biofilter at site MU hosted a high abundance of Methylosinus species while showing less overall methanotroph diversity. It is speculated that the differing composition of the type II population at site MU is driven by the presence of NMVOCs in the landfill gas fed to the biofilter, selecting for organisms capable of co-oxidative degradation of these compounds.  相似文献   

18.
Methanotrophs were enriched and isolated from polluted environments in Canada and Germany. Enrichments in low copper media were designed to specifically encourage growth of soluble methane monooxygenase (sMMO) containing organisms. The 10 isolates were characterized physiologically and genetically with one type I and nine type II methanotrophs being identified. Three key genes: 16S rRNA; pmoA and mmoX, encoding for the particulate and soluble methane monooxygenases respectively, were cloned from the isolates and sequenced. Phylogenetic analysis of these sequences identified strains, which were closely related to Methylococcus capsulatus, Methylocystis sp., Methylosinus sporium and Methylosinus trichosporium. Diversity of sMMO-containing methanotrophs detected in this and previous studies was rather narrow, both genetically and physiologically, suggesting possible constraints on genetic diversity of sMMO due to essential conservation of enzyme function.  相似文献   

19.
Anoxic soils, such as flooded rice fields, are major sources of the greenhouse gas CH(4) while oxic upland soils are major sinks of atmospheric CH(4). Nevertheless, CH(4) is also consumed in rice fields where up to 90% of the produced CH(4) is oxidized in a narrow oxic zone around the rice roots and in the soil surface layer before it escapes into the atmosphere. After 1 day drainage of rice field soil, CH(4) oxidation was detected in the top 2-mm soil layers, but after 8 days drainage the zone of CH(4) oxidation extended to 8 mm depth. Simultaneously, the potential for CH(4) production decreased, but some production was still detectable after 8 days drainage throughout the soil profile. The vertical distribution of the methanotrophic community was also monitored after 1 and 8 days drainage using denaturing gradient gel electrophoresis after PCR amplification with primer sets targeting two regions on the 16S rRNA gene that are relatively specific for methylotrophic alpha- and gamma-Proteobacteria, and targeting two functional genes encoding subunits of key enzymes in all methanotrophs, i.e. the genes for the particulate methane monooxygenase (pmoA) and the methanol dehydrogenase (mxaF). Drainage stimulated the methanotrophic community. Eight days after drainage, new methanotrophic populations appeared and a distinct methanotrophic community developed. The population structure of type I and II methanotrophs was differently affected by drainage. Type II methanotrophs (alpha-Proteobacteria) were present throughout the soil core directly after drainage (1 day), and the community composition remained largely unchanged with depth. Only two new type II populations appeared after 8 days of drainage. Drainage had a more pronounced impact on the type I methanotrophic community (gamma-Proteobacteria). Type I populations were not or only weakly detected 1 day after drainage. However, after 8 days of drainage, a large diversity of type I methanotrophs were detected, altough they were not evenly distributed throughout the soil core but dominated at different depths. A distinct type I community structure had developed within each soil section between 0 and 20 mm soil depth, indicating the widening of suitable habitats for methanotrophs in the rice field soil within 1 week of drainage.  相似文献   

20.
Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号