首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss in intraspecific diversity can alter ecosystem functions, but the underlying mechanisms are still elusive, and intraspecific biodiversity–ecosystem function (iBEF) relationships have been restrained to primary producers. Here, we manipulated genetic and functional richness of a fish consumer (Phoxinus phoxinus) to test whether iBEF relationships exist in consumer species and whether they are more likely sustained by genetic or functional richness. We found that both genotypic and functional richness affected ecosystem functioning, either independently or interactively. Loss in genotypic richness reduced benthic invertebrate diversity consistently across functional richness treatments, whereas it reduced zooplankton diversity only when functional richness was high. Finally, losses in genotypic and functional richness altered functions (decomposition) through trophic cascades. We concluded that iBEF relationships lead to substantial top-down effects on entire food chains. The loss of genotypic richness impacted ecological properties as much as the loss of functional richness, probably because it sustains “cryptic” functional diversity.

Global change is expected to generate a loss of intraspecific diversity worldwide. This mesocosm study explores whether loss of genetic and functional diversity in a predator species affects community and ecosystem functioning of lower trophic levels in pond ecosystems, revealing that diversity loss in a single consumer species can impact an entire ecosystem, reducing its functionality.  相似文献   

2.
We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and stability has not been investigated. Despite the recent rush to embrace the linkage between biodiversity and ecosystem function, we find little support for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites. Given this observation, the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals. Received: 2 September 1999 / Accepted: 26 October 1999  相似文献   

3.
Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on the composition and richness of associated soil bacterial communities. Using terminal restriction fragment length polymorphism (T‐RFLP) community fingerprinting, we found that bacterial community composition differed among R. mangle maternal genotypes but not with genetic diversity. Bacterial taxa richness, total soil nitrogen, and total soil carbon were not significantly affected by maternal genotypic identity or genetic diversity of R. mangle. Our findings show that genotype selection in reforestation projects could influence soil bacterial community composition. Further research is needed to determine what impact these bacterial community differences might have on ecosystem processes, such as carbon and nitrogen cycling.  相似文献   

4.
生物多样性与生态系统生产力之间的关系是当前生态学领域的热点问题。短花针茅(Stipa breviflora)草原是内蒙古荒漠草原的主要类型, 生态系统脆弱, 气候波动剧烈, 研究内蒙古短花针茅草原生物多样性与生产力的关系具有十分重要的意义。该研究在内蒙古短花针茅草原区设置了202个样地进行群落调查, 在干旱区及半干旱区两种资源供给下, 分析了物种丰富度、功能群丰富度与生产力的关系, 旨在解决两个科学问题: 1)物种多样性和功能群多样性中, 哪一种与生产力关系更为密切?2)资源供给对多样性和生产力关系的影响。结果表明: 1)物种丰富度、群落生产力与年降水量呈正相关关系, 而功能群丰富度与年降水量之间不存在显著相关性; 2)群落生产力随物种丰富度的增加而增加, 且两者间呈正线性关系, 功能群丰富度与生产力之间不存在显著相关关系; 3)资源供给会影响多样性与生产力之间的关系, 资源供给低时, 多样性对生产力贡献较低, 资源供给高时, 多样性对生产力的贡献较高。该研究丰富了多样性与生产力关系的研究, 同时, 考虑到植物功能性状的研究在近几年受到生态学家的重视, 且多数研究集中于小尺度的人工控制实验, 因此, 在大尺度自然生态系统中开展功能性状多样性与生态系统功能关系的研究将十分必要。  相似文献   

5.
Biological invasions can lead to extinction events in resident communities and compromise ecosystem functioning. We tested the effect of two widespread biodiversity measurements, genotypic richness and genotypic dissimilarity on community invasibility. We manipulated the genetic structure of bacterial communities (Pseudomonas fluorescens) and submitted them to invasion by Serratia liquefaciens. We show that the two diversity measures impact on invasibility via distinct and additive mechanisms. Genotypic dissimilarity of the resident communities linearly increased productivity and in parallel decreased invasion success, indicating that high dissimilarity prevents invasion through niche pre-emption. By contrast, genotypic richness exerted a hump-shaped effect on invasion and was linked to the production of toxins antagonistic to the invader. This effect peaked at intermediate richness, suggesting that high richness levels may increase invasibility. Invasibility could be well predicted by the combination of these two mechanisms, documenting that both genotypic richness and dissimilarity need to be considered, if we are to understand the biotic properties determining the susceptibility of ecosystems to biological invasions.  相似文献   

6.
Bacterial diversity stabilizes community productivity   总被引:4,自引:0,他引:4  

Background

Stability is a crucial ecosystem feature gaining particular importance in face of increasing anthropogenic stressors. Biodiversity is considered to be a driving biotic force maintaining stability, and in this study we investigate how different indices of biodiversity affect the stability of communities in varied abiotic (composition of available resources) and biotic (invasion) contexts.

Methodology/Principal Findings

We set up microbial microcosms to study the effects of genotypic diversity on the reliability of community productivity, defined as the inverse of the coefficient of variation of across-treatment productivity, in different environmental contexts. We established a bacterial diversity gradient ranging from 1 to 8 Pseudomonas fluorescens genotypes and grew the communities in different resource environments or in the presence of model invasive species. Biodiversity significantly stabilized community productivity across treatments in both experiments. Path analyses revealed that different aspects of diversity determined stability: genotypic richness stabilized community productivity across resource environments, whereas functional diversity determined stability when subjected to invasion.

Conclusions/Significance

Biodiversity increases the stability of microbial communities against both biotic and abiotic environmental perturbations. Depending on stressor type, varying aspects of biodiversity contribute to the stability of ecosystem functions. The results suggest that both genetic and functional diversity need to be preserved to ensure buffering of communities against abiotic and biotic stresses.  相似文献   

7.
Knowledge of the connection between aquatic plant diversity and ecosystem processes is still limited. To examine how plant species diversity affects primary productivity, plant nutrient use, functional diversity of secondary producers and population/community stability, we manipulated submerged angiosperm species diversity in a field experiment lasting 15 weeks. Plant richness increased the shoot density for three of four species. Polyculture biomass production was enhanced by increasing richness, with positive complementarity and selection effects causing positive biodiversity effects. Species richness enhanced the community stability for biomass production and shoot density. Sediment ammonium availability decreased with plant diversity, suggesting improved nutrient usage with increasing plant richness. Interestingly, positive multitrophic effects of plant species richness on structural and functional diversity of macrobenthic secondary producers were recorded. The results suggest that mixed seagrass meadows play an important role for ecosystem functioning and thus contribute to the provision of goods and services in coastal areas.  相似文献   

8.
对不同类型草地功能群多样性和组成与植物群落生产力之间的关系进行了探讨。结果表明:(1)在矮嵩草(Kobresia humlis)草甸和金露梅(Potentilla froticosa)灌丛中,豆科植物的作用比较明显,而其他功能群植物的作用较弱。(2)在藏嵩草(Kobresia tibetica)沼泽化草甸和小嵩草(K.pygmaca)草甸中,虽然杂类草、C3植物和莎草科植物功能群的生产力占群落初级生产力的比例较大,但二者在统计上没有显著性差异,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响,更主要的是受到功能群内物种密度和均匀度的影响,即功能群组成比功能群多样性更能说明对生态系统过程的影响。(3)不同类型草地群落植物功能群盖度与群落初级生产力呈显著的线性相关。(4)不同类型草地群落生产力与功能群内物种数的变化均表现为单峰曲线关系,即功能群内物种数处于中间水平时,群落生产力最高。  相似文献   

9.
山地是高寒草甸的主要分布区,地形变化引起了土壤温湿度和物种的差异性分布,进而影响到草地生态系统生产功能。为明晰高寒草甸山地环境因子(土壤温湿度)和物种多样性(丰富度、多度、均匀度、优势度)与初级生产力的关系,本研究以青藏高原东北缘马牙雪山支脉的高寒草甸山体为研究对象,选择阶地、阴坡、山脊和阳坡与3个海拔梯度段,调查了189个样方的植物群落组成和土壤温湿度。采用线性回归法分析土壤温湿度和物种多样性与初级生产力之间的关系。结果表明:(1)以山地高寒草甸整体为研究单元,初级生产力只随物种多度的增加而显著增加(R~2=0.07 P=0.01)。(2)坡向影响初级生产力的因素不同,阴坡初级生产力与物种丰富度正线性相关;山脊初级生产力与土壤湿度正线性相关,也随物种丰富度增加而显著增加;阳坡初级生产力与物种多度正线性相关;阶地初级生产力随均匀度增加而显著增加,随优势度增加而显著降低。(3)只有低海拔区(2860-2910 m)初级生产力随物种多度和丰富度的增加而显著增加。综上所述,山地高寒草甸土壤温湿度和物种多样性与初级生产力关系受坡向比海拔的影响更大,且物种多样性对初级生产力的影响大于土壤温湿度。建议山地高寒草甸生态系统生产和生态管理过程中要重点考虑坡向对植物多样性和初级生产力的影响。  相似文献   

10.
许多研究探索了与全球变化相关的生态系统功能的变化,但对生态系统功能变化的机制与途径了解较少。初级生产力是生态系统功能的重要组分,但关于氮(N)添加下荒漠草原植物群落初级生产力如何变化以及变化机制尚未明确,N是否通过影响生物多样性来影响荒漠草原初级生产力?为此,本研究在荒漠草原开展了为期4年的N添加控制实验(2018—2021年),试验处理包括对照和4个N添加水平(5、10、20和40 g m-2 a-1),研究了N添加对荒漠草原物种多样性、功能多样性、初级生产力及其关系的影响。结果表明:(1)N添加处理(2018—2021年)改变了植物物种多样性及功能多样性,但年际间变化趋势不同。N添加处理第四年(2021年)荒漠草原植物功能多样性(Rao指数)、群落加权平均值-株高、功能均匀度和功能离散度均显著增加,而荒漠草原植物物种丰富度和Shannon-Wiener指数均显著降低。(2)N添加可以通过影响物种丰富度和功能多样性进而间接地促进荒漠草原初级生产力,但群落加权性状值-株高对初级生产力的影响是正效应,而物种丰富度和功能离散度对初级生产力的影响是...  相似文献   

11.
Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro‐organisms, but similar links for marine micro‐organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity–productivity relationship was independent of community diversity calculated as the Shannon index. From our long‐term (7‐year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning.  相似文献   

12.
植物群落中不同“功能身份”物种的多样性与特定生态系统功能之间具有何种关系及其作用机制尚不明确。通过在高寒矮嵩草(Kobresia humilis)草甸为期5年的刈割(不刈割、留茬3 cm、留茬1 cm)、施肥(施肥、不施肥)和浇水(浇水、不浇水)控制实验, 研究了刈割与土壤资源获得性梯度上不同“功能身份”物种(群落中所有物种、响应物种、作用物种和共有物种)的多样性变化与群落地上净初级生产力和稳定性的关系以及稳定性机制。研究结果显示: 群落中响应物种、作用物种和共有物种数分别占全部物种数的36.6%、18.3%和64.8%, 物种多样性对生态系统功能具有不同的效应, 净初级生产力主要受响应物种和作用物种的多样性变化影响, 而稳定性则主要由共有物种的多样性变化决定; 群落稳定性的维持主要依赖于共有物种的多样性增加, 其作用机制是投资组合效应, 而超产效应和异步性效应对稳定性并无作用; 刈割和施肥对物种多样性、稳定性和净初级生产力具有相反的影响, 前者能增加物种多样性和稳定性, 并降低净初级生产力, 而后者的作用正相反。这与群落中全部物种的多样性变化受刈割影响较大, 而作用物种的多样性变化受资源获得性影响较大有关。上述结果表明高寒草甸生态系统地上净初级生产力主要由少数影响生产力的作用物种的多样性决定, 而稳定性则由大量共有物种的多样性所掌控。投资组合效应是物种多样性导致稳定性的机制。由于群落中不同物种的多样性效应具有分异性, 对于特定的生态系统功能而言, 物种的“功能身份”可能比物种多样性本身更重要, 不加区别地笼统定义物种多样性与生态系统功能的关系可能欠妥。  相似文献   

13.
This study examined two models that are most frequently used to describe the relationship between species richness and productivity (SPR): monotonic positive and hump‐shaped models. We assessed zooplankton community diversity in response to algal productivity. The relationship between net primary productivity (NPP) and rarefied species richness was examined by fitting the data to two models and comparing them using the Akaike information criterion (AICc). Macrophyte banks with the highest net primary productivity had the highest zooplankton abundance. Our results pointed to a hump‐shaped model as the best fit to describe the relationship between zooplankton species richness and primary productivity (ΔAICc > 4). Thus, the diversity was lower at the extremes of productivity and higher at intermediate levels of productivity. We suggest that this relationship might occur because when the resource supply rates are low, environmental conditions are stressful, whereas a high availability of resources enhances competitive exclusion. Two observations supported this statement: (i) the total abundance of the community positively correlated with NPP (P < 0.05), indicating that less productive sites had few consumers and the raised productivity tended to favour the total abundance; (ii) NPP was negatively correlated with evenness (P < 0.05), indicating that productivity increased the dominance of certain species in the communities. Therefore, we challenged two of the models most frequently used to explain SPR, and discuss some mechanisms underlying a hump‐shaped SPR.  相似文献   

14.
The relationship between species richness and productivity is important from both a basic, theoretical perspective and also because it has important ramifications for applied ecology including ecosystem restoration and the design of carbon offset plantings. While a more species‐rich community is often believed to be more productive than a species‐poor community, findings from observational and experimental studies differ and our understanding of the relationship comes largely from grasslands. Consequently, we aimed to determine for the first time the nature of the species richness–productivity relationship in a southern‐hemisphere dry sclerophyll ecosystem. We investigated the impact of species richness on productivity, plant density and mean plant biomass at three sowing densities in three species assemblages. Eucalyptus globulus, Acacia mearnsii and Allocasuarina verticillata were each grown as monocultures and included in every subsequent level of species richness, forming three distinct species assemblages. Communities were grown in a glasshouse pot experiment for four months, then harvested and above‐ground biomass measured. We found no general species richness–productivity relationship in the communities studied. There were no overall increases in productivity as species richness increased and in fact in most cases the productivity of communities with 4 and 8 species was lower than monocultures of the dominants. Importantly, density influenced the way richness affected productivity and this effect was dependent upon assemblage, indicating that species identity is a key determinant of productivity. These results demonstrate important ecological principles in a previously untested system. A key outcome of this experiment is that density alters the relationship between species richness and initial productivity in assemblages of Australian dry sclerophyll species.  相似文献   

15.
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production.  相似文献   

16.
江苏沿江地区出口产品仓储昆虫群落结构数量特征研究   总被引:20,自引:2,他引:18  
对江苏沿江地区出口产品仓储昆虫进行调查,分析了5种出口产品仓储昆虫群落的优势种.利用群落物种的丰富度、生态优势度、多样性和均匀度等群落特征指数,研究了5种类型出口产品仓储昆虫群落结构的数量特征,并分析了它们的相似性.通过系统聚类分析将5种群落分为4类,草柳藤制品和羽绒制品仓储昆虫群落同属一类,其它3种产品仓储昆虫群落各属一类.除木制品群落结构相对合理外,其它群落结构都不合理,皮毛制品群落结构尤其不合理.  相似文献   

17.
J. Norberg 《Oecologia》2000,122(2):264-272
This study examines the relationship between cladoceran species richness and ecosystem functioning. I conducted an experiment in which four cladocerans, Daphnia. magna, D. longispina, D. pulex and Chydorus sphaericus, were cultured in microcosms using different species combinations and levels of species richness. The results demonstrate that even within this closely related group of organisms the effects on ecosystem-level variables, such as total algae and zooplankton biomass, per capita productivity, and nutrient concentrations, as well as phytoplankton community structure, were highly variable between different combinations of these species. Since only four species where involved in this study, species-specific effects dominated the general relationship between species richness and ecosystem functioning. Particular combinations of species resulted in effects that indicated more efficient grazing. These effects, which were most pronounced in combinations including both D. magna and C. sphaericus, were manifested as an indirect effect as the prey community shifted towards grazing-resistant species. As a result, the productivity of the prey community decreased, because phytoplankton species with lower per capita productivity became more dominant. I suggest that the primary mechanism that caused this significant effect was complementarity in prey-size use of D. magna and C. sphaericus. In terms of prey-size range, D. pulex and D. longispina were redundant when D. magna was present and were quickly out-competed by the latter despite higher per capita filtering efficiency. The results show that different mechanisms are important for different combinations of species. Furthermore, the ability of the prey community to respond to changes of consumer species composition is an important factor in experiments in which consumer species richness is experimentally manipulated. Received: 2 November 1998 / Accepted: 8 September 1999  相似文献   

18.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

19.
Biodiversity is a major determinant of ecosystem functioning. Species-rich communities often use resources more efficiently thereby improving community performance. However, high competition within diverse communities may also reduce community functioning. We manipulated the genotypic diversity of Pseudomonas fluorescens communities, a plant mutualistic species inhibiting pathogens. We measured antagonistic interactions in vitro, and related these interactions to bacterial community productivity (root colonisation) and ecosystem service (host plant protection). Antagonistic interactions increased disproportionally with species richness. Mutual poisoning between competitors lead to a 'negative complementarity effect', causing a decrease in bacterial density by up to 98% in diverse communities and a complete loss of plant protection. The results emphasize that antagonistic interactions may determine community functioning and cause negative biodiversity-ecosystem functioning relationships. Interference competition may thus be an additional key for predicting the dynamics and performance of natural assemblages and needs to be implemented in future biodiversity models.  相似文献   

20.
While there has been a rapidly increasing research effort focused on understanding whether and how composition and richness of species and functional groups may determine ecosystem properties, much remains unknown about how these community attributes affect the dynamic properties of ecosystems. We conducted an experiment in 540 mini‐ecosystems in glasshouse conditions, using an experimental design previously shown to be appropriate for testing for functional group richness and composition effects in ecosystems. Artificial communities representing 12 different above‐ground community structures were assembled. These included treatments consisting of monoculture and two‐ and four‐species mixtures from a pool of four plant species; each plant species represented a different functional group. Additional treatments included two herbivore species, either singly or in mixture, and with or without top predators. These experimental units were then either subjected to an experimentally imposed disturbance (drought) for 40 d or left undisturbed. Community composition and drought both had important effects on plant productivity and biomass, and on several below‐ground chemical and biological properties, including those linked to the functioning of the decomposer subsystem. Many of these compositional effects were due to effects both of plant and of herbivore species. Plant functional group richness also exerted positive effects on plant biomass and productivity, but not on any of the below‐ground properties. Above‐ground composition also had important effects on the response of below‐ground properties to drought and thus influenced ecosystem stability (resistance); effects of composition on drought resistance of above‐ground plant response variables and soil chemical properties were weaker and less consistent. Despite the positive effects of plant functional group richness on some ecosystem properties, there was no effect of richness on the resistance of any of the ecosystem properties we considered. Although herbivores had detectable effects on the resistance of some ecosystem properties, there were no effects of the mixed herbivore species treatment on resistance relative to the single species herbivore treatments. Increasing above‐ground food chain length from zero to three trophic levels did not have any consistent effect on the stability of ecosystem properties. There was no evidence of either above‐ground composition or functional group richness affecting the recovery rate of ecosystem properties from drought and hence ecosystem resilience. Our data collectively point to the role of composition (identity of functional group), but not functional group richness, in determining the stability (resistance to disturbance) of ecosystem properties, and indicates that the nature of the above‐ground community can be an important determinant of the consistency of delivery of ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号