首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
The biological effect of Ho3+ on Halobacterium halobium R1 growth was analyzed using the microcalorimetric method. Using the LKB-2277 Bioactivity Monitor with the ampoule method at 37°C, the thermogenic curves of the growth of H. halobium R1 were obtained. Then, the maximum power (P m) and the growth rate constants (k) were determined, and the values of P m and k were linked to the concentration of Ho3+. In all, the addition of Ho3+ cause a decrease in the maximum heat production and growth rate constants. To confirm the results, the shapes of H. halobium R1 cell addition with Ho3+ using a transmission electron microscope (TEM) were observed. According to the thermogenic curves and TEM photos of H. halobium R1 under different conditions, it is clear that the metabolic mechanism of H. halobium R1 growth has been changed with the addition of Ho3+.  相似文献   

2.
A microcalorimetric technique was used to evaluate the influence of Er3+ on Halobacterium halobium R1 growth. By means of a LKB-2277 Bioactivity Monitor ampoule method, we obtained the thermogenic curves of H. halobium R1 growth at 37°C. In order to analyze the results, the relationship between k and C was obtained. The addition of Er3+ in low concentration cause a decrease of the maximum heat production P max and growth rate constants k; however, Er3+ in a high concentration might promote growth of H. halobium R1. When Er3+ is in a much higher concentration, the growth of H. halobium R1 is inhibited completely. For comparison, the shapes of H. halobium R1 cells were observed by means of transmission electron microscope (TEM). According to the thermogenic curves and TEM photos of H. halobium R1 under different conditions, it is clear that the metabolic mechanism of H. halobium R1 growth has been changed with the addition of Er3+.  相似文献   

3.
A microcalorimeric technique was used to evaluate the influence of rare earths Ce3+ on Halobacterium halobium R1 growth. By means of TAM air Thermal Activity Monitor, the thermogenic curves of H. halobium R1 growth were obtained. To analyze the results, the growth rate constant k and IC50 were calculated, indicating that the values of k are linked to the concentration of Ce3+. The growth rate constant k of H. halobium R1 decreased gradually in the low concentration; thus, rare earths restrained the growth of H. halobium R1. On the contrary, as the concentration of Ce3+ became higher, the value of k for H. halobium R1 increased gradually, which showed Ce3+ stimulated the growth of H. halobium R1. When the concentration of rare earths became much higher, the value of k for H. halobium R1 also decreased, and the growth of H. halobium R1 was restrained totally in the end. By using transmission electron microscopy (TEM), it was observed that the transforming of H. halobium R1 in the different concentrations of Ce3+ confirmed the results derived from microcalorimetry. According to the thermogenic curves and TEM photos of H. halobium R1 under various conditions, it showed that there was some special effect about the interaction between rare earths and H. halobium R1 growth.  相似文献   

4.
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P m) and the growth rate constant (k) were determined, which showed that values of P m and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.  相似文献   

5.
By using an LKB-2277 Bioactivity Monitor, cycle-flow method, the thermogenic curves of aerobic growth for Bacillus thuringiensis cry II strain at 28°C have been obtained. The metabolic thermogenic curves of B. thuringiensis cry II contained two distinct patterns: the first reflects the changes during the bacterial growth phase and the second corresponds to the sporulation phase. From these thermogenic curves in the absence and presence of Sm3+ ions, the thermokinetic parameters such as the growth rate constants k, the interval time τI, the maximum power P max 1 and heat-output Q log for log phase, the maximum power P max 2 and heat-output Q stat for stationary phase, the heat-output Q spor for sporulation phase and total heat effects Q T are calculated. Sm3+ ion has promoting action on the growth of B. thuringiensis cry II in its lower concentration range; on the other hand, this ion has inhibitory action on the sporulation of B. thuringiensis in its higher concentration range. We also found that the effects of Sm3+ ion on B. thuringiensis during the sporulation phase were far greater than that during the bacterial phase. It is concluded that the application of B. thruringiensis of controlling insecticides is not affected by the presence of the rare-earth elements in the environmental ecosystem.  相似文献   

6.
Summary InNitella cells with low pump activity, the electrical characteristics of membrane transport are mainly determined by K+ transport. Current-voltage curves were measured at outside K+ concentrations ranging from 0.1 to 100 mol m–3. Above 1 mol m–3, current saturated at positive and at very negative potentials. It was found that theseI–V curves could be fitted by a Class 1, case 1 reaction kinetic model, which is a cyclic reaction scheme with one pair of rate constants sensitive to membrane potential (Class I) and neutral transporter (or electrically charged substrate-transporter complex, case I). The analysis revealed the relative rate constants of a 3-state model. From the linear dependence of the rate constant of substrate binding (k 32) on [K+] a the stoichiometry of 1 K+/cycle was obtained. The complex transporter substrate is very unstable (very high value ofK 23) resulting in a very low density of this state and in what can be called Mitchellian behavior; namely, the driving forces resulting from the electrical and from the concentration gradient can hardly be distinguished.  相似文献   

7.
Summary The prime potassium channel from the tonoplast of Chara corallina has been analyzed in terms of an enzyme kinetic model (Gradmann, Klieber & Hansen 1987, Biophys. J. 53:287) with respect to its selectivity for K+ over Rb+ and to its blockage by Cs+ and by Ca2+. The channel was investigated by patchclamp techniques over a range of membrane voltages (V m , referred to an extracytoplasmic electrical potential of zero) from –200 mV to + 200 mV under various ionic conditions (0 to 300 mM K+, Rb+, Cs+, Ca2+, and Cl) on the two sides of isolated patches. The experimental data are apparent steady-state currentvoltage relationships under all experimental conditions used and amplitude histograms of the seemingly noisy open-channel currents in the presence of Cs+. The used model for K+ uniport comprises a reaction cycle of one binding site through four states, i.e., (1) K+-loaded and charged, facing the cytoplasm, (2) K+-loaded and charged facing the vacuole, (3) empty, facing the vacuole, and (4) empty, facing the cytoplasm. V m enters the system in the form of a symmetric Eyring barrier between state 1 and 2. The numerical results for the individual rate constants are (in 106s–1 for zero voltage and 1 m substrate concentration): k 12: 1,410, k 21: 3,370, k 23: 105,000, k 32: 10,600, k 34: 194, k 43: 270, k 41: 5,290, k 14: 15,800. For the additional presence of an alternate transportee (here Rb+), the model can be extended in an analog way by another two states ((5) Rb+-loaded and charged, facing cytoplasm, and (6) Rb+-loaded and charged, facing vacuole) and six more rate constants (k 45: 300, k 54: 240, k 56: 498, k 65: 4,510, k 63: 4,070, k 36: 403). This six-state model with its unique set of fourteen parameters satisfies the complete set of experimental data. If the competing substrate can be bound but not translocated (here Cs+ and Ca2+), k 56 and k 65 of the model are zero, and the stability constants K cyt (= k 36/k 63) and K vac (= k 45/k 54) turn out to be K cyt(Ca2+): 250 m –1 · exp(V m /(64 mV)), k vac(Ca2+): 10 m –1 · exp(–V m /(66 mV)), K cyt(Cs+): 0, and K vac(Cs+): 46 m –2 · exp(–V m /(12.25 mV)). With the assumption that the current fluctuations in the presence of Cs+ consist of incompletely resolved, short periods of complete openings and complete closures, the amplitude histograms of the noisy open channel currents can be described by a beta distribution, yielding the rate constants for binding (92 · 106 sec–1 · m –2 · exp(–V m /(22.5 mV)) and debinding (2, 106 sec–1 · m –2 · exp(V m /(22.5 mV)) of Cs+ to the vacuolar side of the channel as functions of the [Cs+] and of V m . Considering these data and those from the literature, an asymmetry of the channel can be assessed, with a high charge density at the cytoplasmic side (Eisenman-series Nr. XI) and a low charge density at the vacuolar side (Eisenman-series Nr. I). Furthermore, the results provide an example for intimate linkage between conduction and switching of a channel.This work has been supported by the Deutsche Forschungsgemeinschaft.  相似文献   

8.
《Autophagy》2013,9(12):1472-1489
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.  相似文献   

9.
The diatom Eucampia zodiacus Ehrenberg is one of the harmful diatoms which indirectly cause, through nutrient depletion, discoloration of Porphyra thalli. The effect of temperature on light-limited growth of E. zodiacus was examined at 13 irradiance levels (5–350 μmol m−2 s−1) in combination with five temperatures (8.0–25.0 °C). The results showed that all the parameters of growth-irradiance curves, such as the maximum growth rate (μm), half saturation constant (Ks), threshold value of irradiance (I0) and saturation irradiance for growth (S), increased with increasing temperature. On the basis of the relationship between temperature and growth-irradiance curves and seasonal fluctuation of the light environment in Harima-Nada, the effect of irradiance on the population dynamics of E. zodiacus during the period from October to March was evaluated using two indices, depth of the threshold irradiance for growth (Dt) and depth where a half of its maximum growth rate is attained (Dk). Dt and Dk remained almost stable from October to December, but gradually increased in early March. This indicates that the range of depth at which E. zodiacus was able to grow increased markedly in early spring when E. zodiacus blooms in Harima-Nada. As the vegetative cells of E. zodiacus tend to distribute in relatively deeper water layers, where growth is limited by irradiance, the increase in the depth range over which E. zodiacus is able to grow is concluded to be an important factor allowing development of its blooms.  相似文献   

10.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

11.
Summary The plasma membrane of the yeast Saccharomyces cerevisiae has been investigated by patch-clamp techniques, focusing upon the most conspicuous ion channel in that membrane, a K+-selective channel. In simple observations on inside-out patches, the channel is predominantly closed at negative membrane voltages, but opens upon polarization towards positive voltages, typically displaying long flickery openings of several hundred milliseconds, separated by long gaps (G). Elevating cytoplasmic calcium shortens the gaps but also introduces brief blocks (B, closures of 2–3 msec duration). On the assumption that the flickery open intervals constitute bursts of very brief openings and closings, below the time resolution of the recording system, analysis via the beta distribution revealed typical closed durations (interrupts, I) near 0.3 msec, and similar open durations. Overall behavior of the channel is most simply described by a kinetic model with a single open state (O), and three parallel closed states with significantly different lifetimes: long (G), short (B) and very short (I). Detailed kinetic analysis of the three open/closed transitions, particularly with varied membrane voltage and cytoplasmic calcium concentration, yielded the following stability constants for channel closure: K I =3.3 · e –zu in which u=eV m /kT is the reduced membrane voltage, and z is the charge number; K G = 1.9 · 10–4([Ca2+] · e zu )–1; and K B =2.7 · 103([Ca2+] · e zu )2. Because of the antagonistic effects of both membrane voltage (V m ) and cytoplasmic calcium concentration ([Ca2+]cyt) on channel opening from the B state, compared with openings from the G state, plots of net open probability (P 0 ) vs. either V m or [Ca2+] are bell-shaped, approaching unity at low calcium ( m) and high voltage (+150 mV), and approaching 0.25 at high calcium (10 mm) and zero voltage. Current-voltage curves of the open channel are sigmoid vs. membrane voltage, saturating at large positive or large negative voltages; but time-averaged currents, along the rising limb of P 0 (in the range 0 to +150 mV, for 10 m [Ca2+]) make this channel a strong outward rectifier. The overall properties of the channel suggest that it functions in balancing charge movements during secondary active transport in Saccharomyces.The authors are indebted to Dr. Michael Snyder and Dr. Constance Copeland (Yale Department of Biology) for providing the tetraploid yeast strain and for initial assistance in handling the cells and preparing protoplasts; and to Dr. Esther Bashi for technical assistance throughout the experiments. The work was supported by Research Grant 85ER13359 from the United States Department of Energy (to C.L.S.), by Forschungs-Stipendium Be 1181/2-1 from the Deutsche Forschungsgemeinschaft (to A.B.), and by Akademie-Stipendium II/66647 from the Volkswagenstiftung (to D.G.).  相似文献   

12.
Growth, chemical composition, and nitrate reductase activity (NRA) of hydroponically cultured Rumex crispus, R. palustris, R. acetosa, and R. maritimus were studied in relation to form (NH4 +, NO3 -, or both) and level of N supply (4 mM N, and zero-N following a period of 4mM N). A distinct preference for either NH4 + or NO3 - could not be established. All species were characterized by a very efficient uptake and utilization of N, irrespective of N source, as evident from high concentrations of organic N in the tissues and concurrent excessive accumulations of free NO3 - and free NH4 +. Especially the accumulation of free NH4 + was unusually large. Generally, relative growth rate (RGR) was highest with a combination of NH4 + and NO3 -. Compared to mixed N supply, RGR of NO3 -- and NH4 +-grown plants declined on average 3% and 9%, respectively. Lowest RGR with NH4 + supply probably resulted from direct or indirect toxicity effects associated with high NH4 + and/or low Ca2+ contents of tissues. NRA in NO3 - and NH4NO3 plants was very similar with maxima in the leaves of ca 40 μmol NO2 - g-1 DW h-1. ‘Basal’ NRA levels in shoot tissues of NH4 + plants appeared relatively high with maxima in the leaves of ca 20 μmol NO2 - g-1 DW h-1. Carboxylate to organic N ratios, (C-A)/Norg, on a whole plant basis varied from 0.2 in NH4 + plants to 0.9 in NO3 - plants. After withdrawal of N, all accumulated NO3 - and NH4 + was assimilated into organic N and the organic N redistributed on a large scale. NRA rapidly declined to similar low levels, irrespective of previous N source. Shoot/root ratios of -N plants were 50–80% lower than those from +N plants. In comparison with +N, RGR of -N plants did not decline to a large extent, decreasing by only 15% in -NH4 + plants due to very high initial organic-N contents. N-deprived plants all exhibited an excess cation over anion uptake (net proton efflux), and whole-plant (C-A)/Norg ratios increased to values around unity. Possible difficulties in interpreting the (C-A)/Norg ratio and NRA of plants in their natural habitats are briefly discussed.  相似文献   

13.
Summary The presence of a Ca2+ channel in the plasmalemma of tonoplast-freeNitellopsis obtusa cells was demonstrated and its characteristics were studied using current- and voltage-clamp techniques. A long-lasting inward membrane current (I m ), recorded using a step voltage clamp, consisted of a single component without time-dependent inactivation. Increasing either [Ca2+] o or [Cl] o 1) enhanced the maximum amplitude of inwardI m ((I m ) p ) and 2) shifted the peak voltage ((V m ) p ) at(I m ) p to more positive values under ramp-shaped voltage clamping and 3) depolarized the peak value of action potentials. This behavior is consistent with predictions based on the Nernst equation for Ca2+ but not for Cl. DIDS (4,4-diisothiocyano-2,2-disulfonic acid stilbene) did not suppress(I m ) p in tonoplast-free cells, in contrast with its effect on normal cells. La3+ and nifedipine blocked(I m ) p irreversibly. On the other hand, Ca2+ channel agonist, BAY K 8644 irreversibly enhanced(I m ) p . Both Sr2+ influx and K+ efflux increased upon excitation. The charge carried by Sr2+ influx was compensated for by K+ efflux. It is concluded that only the Ca2+ channel is activated during plasmalemma excitation in tonoplast-free cells. In terms of the magnitude of(I m ) p , Sr2+ could replace Ca2+, but Mn2+, Mg2+ and Ba2+ could not. External pH affected(I m ) p and the membrane conductance (g m ) at(I m ) p ((g m ) p ). Increasing the external ionic strength caused increases in both(I m ) p and(g m ) p , and shifted(V m ) p to positive values. At the same time, Sr2+ influx increased. Thus Ca2+ channel activation seems to be enhanced by increasing external ionic strength. The possible involvement of surface potential is discussed.  相似文献   

14.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

15.
Summary The voltage- and time-dependent K+ current,I K + out , elicited by depolarization of corn protoplasts, was inhibited by the addition of calcium channel antagonists (nitrendipine, nifedipine, verapamil, methoxyverapamil, bepridil, but not La3+) to the extracellular medium. These results suggested that the influx of external Ca2+ was necessary for K+ current activation. The IC50, concentration of inhibitor that caused 50% reduction of the current, for nitrendipine was 1 m at a test potential of +60 mV following a 20-min incubation period.In order to test whether intracellular Ca2+ actuated the K+ current, we altered either the Ca2+ buffering capacity or the free Ca2+ concentration of the intracellular medium (pipette filling solution). By these means,I K + out could be varied over a 10-fold range. Increasing the free Ca2+ concentration from 40 to 400nm also shifted the activation of the K+ current toward more negative potentials. Maintaining cytoplasmic Ca2+ at 500nm with 40nm EGTA resulted in a more rapid activation of the K+ current. Thus the normal rate of activation of this current may reflect changes in cytoplasmic Ca2+ on depolarization. Increasing intracellular Ca2+ to 500nm or 1 m also led to inactivation of the K+ current within a few minutes. It is concluded thatI K + out is regulated by cytosolic Ca2+, which is in turn controlled by Ca2+ influx through dihydropyridine-, and phenylalkylamine-sensitive channels.  相似文献   

16.
Chen  C. R.  Condron  L. M.  Sinaj  S.  Davis  M. R.  Sherlock  R. R.  Frossard  E. 《Plant and Soil》2003,256(1):115-130
Vegetative conversion from grass to forest may influence soil nutrient dynamics and availability. A short-term (40 weeks) glasshouse experiment was carried out to investigate the impacts of ryegrass (Lolium perenne) and radiata pine (Pinus radiata) on soil phosphorus (P) availability in 15 grassland soils collected across New Zealand using 33P isotopic exchange kinetics (IEK) and chemical extraction methods. Results from this study showed that radiata pine took up more P (4.5–33.5 mg P pot–1) than ryegrass (1.1–15.6 mg pot–1) from the soil except in the Temuka soil in which the level of available P (e.g., E 1min Pi, bicarbonate extractable Pi) was very high. Radiata pine tended to be better able to access different forms of soil P, compared with ryegrass. There were no significant differences in the level of water soluble P (Cp, intensity factor) between soils under ryegrass and radiata pine, but the levels of Cp were generally lower compared with original soils due to plant uptake. The growth of both ryegrass and radiata pine resulted in the redistribution of soil P from the slowly exchangeable Pi pool (E > 10m Pi, reduced by 31.8% on the average) to the rapidly exchangeable Pi (E 1min-1d Pi, E 1d-10m Pi) pools in most soils. The values of R/r 1 (the capacity factor) were also generally greater in most soils under radiata pine compared with ryegrass. Specific P mineralisation rates were significantly greater for soils under radiata pine (8.4–21.9%) compared with ryegrass (0.5–10.8%), indicating that the growth of radiata pine enhanced mineralisation of soil organic P. This may partly be ascribed to greater root phosphatase activity for radiata pine than for ryegrass. Plant species × soil type interactions for most soil variables measured indicate that the impacts of plant species on soil P dynamics was strongly influenced by soil properties.  相似文献   

17.
A role for cytosolic free Ca2+ (Ca2+i) in the regulation of growth of Papaver rhoeas pollen tubes during the self-incompatibility response has recently been demonstrated [Franklin-Tong et al. Plant J. 4:163–177 (1993); Franklin-Tong et al. Plant J. 8:299–307 (1995); Franklin-Tong et al. submitted to Plant J.]. We have investigated the possibility that Ca2+i is more generally involved in the regulation of pollen tube growth using confocal laser scanning microscopy (CLSM). Data obtained using Ca2+ imaging, in conjunction with photolytic release of caged inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], point to a central role of the phosphoinositide signal transduction pathway in the control of Ca2+ fluxes and control of pollen tube growth. These experiments further revealed that increases in cytosolic levels of Ins(1,4,5)P3 resulted in the formation of distinct Ca2+ waves. Experiments using the pharmacological agents heparin, neomycin and mastoparan further indicated that Ca2+ waves are propagated, at least in part, by Ins(1,4,5)P3-induced Ca2+ release rather than by simple diffusion or by “classic” Ca2+-induced Ca2+ release mechanisms. We also have data which suggest that Ca2+ waves and oscillations may be induced by photolytic release of caged Ca2+. Ratio-imaging has enabled us to identify an apical oscillating Ca2+ gradient in growing pollen tubes, which may regulate normal pollen tube growth. We also present evidence for the involvement of Ca2+ waves in mediating the self-incompatibility response. Our data suggest that changes in Ca2+i and alterations in growth rate/patterns are likely to be closely correlated and may be causally linked to events such as Ca2+-induced, or Ins(1,4,5)P3-induced wave formation and apical Ca2+ oscillations.Presented at the 1997 SEB Annual Meeting: Interactive MultiMedia Biology - Experimental Biology Online Symposium, Canterbury, 7-11 April  相似文献   

18.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

19.
A carboxypeptidase B (CPB) has been purified from dogfish (Scyliorhinus canicula) pancreas and partially characterized. The purification procedure included acetone precipitation, ion-exchange chromatography on a CM-cellulose column and gel filtration on Sephadex G-75. The purified enzyme migrates as a single band both on PAGE and SDS-PAGE. Its molecular mass is estimated to be about 32 kDa. The optimum of activity is obtained at pH 7.5–8.2. The enzyme is inhibited by typical metal-chelating agents (EDTA and o-phenanthroline) and by Hg2+. It is activated by Co2+, l-cysteine and by heat treatment at 40° and 50°C. Kinetic parameters, Km and kcat, of native enzyme, Co2+-activated CPB and heat-treated CPB have been determined  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号