首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We assessed the catalase bioactivity and hydrogen peroxide (H(2)O(2)) production rate in human breast cancer (HBC) cell lines and compared these with normal human breast epithelial (HBE) cells. We observed that the bioactivity of catalase was decreased in HBC cells when compared with HBE cells. This was also accompanied by an increase in H(2)O(2) steady-state levels in HBC cells. Silencing the catalase gene led to a further increase in the steady-state level of H(2)O(2) which was also accompanied by an increase in growth rate of HBC cells. Catalase activity was up regulated on treatment with superoxide (O(2)(-)) scavengers such as pegylated SOD (PEG-SOD, indicating inhibition of catalase by the increased O(2)(-) produced by HBC cells. Transfection of either catalase or glutathione peroxidase to HBC cells decreased intracellular H(2)O(2) levels and led to apoptosis of these cells. The H(2)O(2) produced by HBC cells inhibited PP2A activity accompanied by increased phosphorylation of Akt and ERK1/2. The importance of catalase bioactivity in breast cancer was further confirmed as its bioactivity was also decreased in human breast cancer tissues when compared to normal breast tissues. We conclude that inhibition of catalase bioactivity by O(2)(-) leads to an increase in steady-state levels of H(2)O(2) in HBC cells, which in turn inhibits PP2A activity, leading to phosphorylation of ERK 1/2 and Akt and resulting in HBC cell proliferation.  相似文献   

2.
Implantable and miniature carbon fiber microelectrode (CFME)-based third-generation biosensor for superoxide anion (O(2)(-)) was fabricated for the first time. The CFME-based biosensor was constructed by electro-deposition of Au nanoparticles on the CFMEs and then modification of the Au nanoparticles by cysteine followed by immobilization of superoxide dismutase (SOD) on the electrodes. The direct electrochemistry of the SOD immobilized on the CFME-based electrodes was efficiently realized by electron transfer promoter - cysteine molecules confined on the Au nanoparticles deposited on the CFMEs. The CFME-based biosensors were demonstrated to possess striking analytical properties for O(2)(-) determination, such as optional operation potentials, high selectivity and sensitivity as well as good stability. Along with the implantable capacity inherent in the CFMEs, these striking analytical properties of the CFME-based biosensors substantially make them potential for in vivo determination of O(2)(-).  相似文献   

3.
Cu-Zn superoxide dismutase (Sod1) loss causes a redox imbalance as it leads to excess superoxide generation, which results in the appearance of various aging-related phenotypes, including skin atrophy. Noble metal nanoparticles, such as palladium (Pd) and platinum (Pt) nanoparticles, are considered to function as antioxidants due to their strong catalytic activity. In Japan, a mixture of Pd and Pt nanoparticles called PAPLAL has been used to treat chronic diseases over the past 60 years. In the present study, we investigated the protective effects of PAPLAL against aging-related skin pathologies in mice. Transdermal PAPLAL treatment reversed skin thinning associated with increased lipid peroxidation in Sod1 −/− mice. Furthermore, PAPLAL normalized the gene expression levels of Col1a1, Mmp2, Has2, Tnf-α, Il-6, and p53 in the skin of the Sod1 −/− mice. Pt nanoparticles exhibited marked SOD and catalase activity, while Pd nanoparticles only displayed weak SOD and catalase activity in vitro. Although the SOD and catalase activity of the Pt nanoparticles significantly declined after they had been oxidized in air, a mixture of Pd and Pt nanoparticles continued to exhibit SOD and catalase activity after oxidation. Importantly, a mixture of Pd and Pt nanoparticles with a molar ratio of 3 or 4 to 1 continued to exhibit SOD and catalase activity after oxidation, indicating that Pd nanoparticles prevent the oxidative deterioration of Pt nanoparticles. These findings indicate that PAPLAL stably suppresses intrinsic superoxide generation both in vivo and in vitro via SOD and catalase activity. PAPLAL is a potentially powerful tool for the treatment of aging-related skin diseases caused by oxidative damage.  相似文献   

4.
Endothelium-dependent, nitric oxide (NO)-mediated vasodilation can be impaired by reactive oxygen species (ROS), and this deleterious effect of ROS on NO availability may increase with aging. Endothelial function declines rapidly after menopause, possibly because of loss of circulating estrogen and its antioxidant effects. The purpose of the current study was to determine the role of O(2)(-) and H(2)O(2) in regulating flow-induced dilation in coronary arterioles of young (6-mo) and aged (24-mo) intact, ovariectomized (OVX), or OVX + estrogen-treated (OVE) female Fischer 344 rats. Both aging and OVX reduced flow-induced NO production, whereas flow-induced H(2)O(2) production was not altered by age or estrogen status. Flow-induced vasodilation was evaluated before and after treatment with the superoxide dismutase (SOD) mimetic Tempol (100 μM) or the H(2)O(2) scavenger catalase (100 U/ml). Removal of H(2)O(2) with catalase reduced flow-induced dilation in all groups, whereas Tempol diminished vasodilation in intact and OVE, but not OVX, rats. Immunoblot analysis revealed elevated nitrotyrosine with aging and OVX. In young rats, OVX reduced SOD protein while OVE increased SOD in aged rats; catalase protein did not differ in any group. Collectively, these studies suggest that O(2)(-) and H(2)O(2) are critical components of flow-induced vasodilation in coronary arterioles from female rats; however, a chronic deficiency of O(2)(-) buffering by SOD contributes to impaired flow-induced dilation with aging and loss of estrogen. Furthermore, these data indicate that estrogen replacement restores O(2)(-) homeostasis and flow-induced dilation of coronary arterioles, even at an advanced age.  相似文献   

5.
In the present study, the effect of two particular reactive oxygen species (ROS), superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) on buffalo (Bubalus bubalis) sperm capacitation and associated protein tyrosine phosphorylation was studied. Ejaculated buffalo spermatozoa were suspended in sp-TALP medium at 50 x 10(6)/mL and incubated at 38.5 degrees C for 6h with or without heparin (10(g/mL; a positive control), or xanthine (X; 0.5mM)-xanthine oxidase (XO; 0.05 U/mL)-catalase (C; 2100 U/mL) system that generates O(2)(-) or NADPH (5mM) that stimulates the endogenous O(2)(-) production or H(2)O(2) (50 microM). The specific effect of O(2)(-), H(2)O(2) and NADPH on buffalo sperm capacitation and protein tyrosine phosphorylation was assessed by the addition of superoxide dismutase (SOD), catalase and diphenylene iodonium (DPI), respectively, to the incubation medium. Each of X+XO+C system, NADPH and H(2)O(2) induced a significantly higher percentage (P<0.05) of capacitation in buffalo spermatozoa compared to control. However, DPI inhibited this NADPH-induced capacitation and protein tyrosine phosphorylation and suggested for existence of an oxidase in buffalo spermatozoa. Using immunoblotting technique, at least seven tyrosine-phosphorylated proteins (20, 32, 38, 45, 49, 78 and 95 kDa) were detected in capacitated buffalo spermatozoa. Out of these, the tyrosine phosphorylation of p95 was induced extensively by both O(2)(-) as well as exogenous source of H(2)O(2) and using specific activators and inhibitors of signaling pathways, it was found this induction was regulated through a cAMP-dependent PKA pathway. Further, immunofluorescent localization study revealed that these ROS-induced tyrosine-phosphorylated proteins are mostly distributed in the midpiece and principal piece regions of the flagellum of capacitated spermatozoa and suggested for increased molecular activity in flagellum during capacitation. Thus, the study revealed that both O(2)(-) and H(2)O(2) promote capacitation and associated protein tyrosine phosphorylation in buffalo spermatozoa and unlike human and bovine, a different subset of sperm proteins were tyrosine-phosphorylated during heparin- and ROS-induced capacitation and regulation of these ROS-induced processes were mediated through a cAMP/PKA signaling pathway.  相似文献   

6.
During the oxidation of NADH by horseradish peroxidase (HRP-Fe(3+)), superoxide (O(-)(2)) is produced, and HRP-Fe(3+) is converted to compound III. Superoxide dismutase inhibited both the generation of O(-)(2) and the formation of compound III. In contrast, catalase inhibited only the generation of O(-)(2). Under anaerobic conditions, the formation of compound III did not occur in the presence of NADH, thus indicating that compound III is produced via formation of a ternary complex consisting of HRP-Fe(3+), NADH and oxygen. The generation of hydroxyl radicals was dependent upon O(-)(2) and H(2)O(2) produced by HRP-Fe(3+)-NADH. The reaction of compound III with H(2)O(2) caused the formation of compound II without generation of hydroxyl radicals. Only HRP-Fe(3+)-NADH (but not K(+)O(-)(2) and xanthine oxidase-hypoxanthine) was able to induce the conversion of metmyoglobin to oxymyoglobin, thus suggesting the participation of a ternary complex made up of HRP-Fe(2+…)O(2)(…)NAD(.) (but not free O(-)(2) or H(2)O(2)) in the conversion of metmyoglobin to oxymyoglobin. It appears that a cyclic pathway is formed between HRP-Fe(3+), compound III and compound II in the presence of NADH under aerobic conditions, and a ternary complex plays the central roles in the generation of O(-)(2) and hydroxyl radicals.  相似文献   

7.
Our previous studies have shown that 5-hydroxytryptamine (5-HT) induces cellular hyperplasia/hypertrophy through protein tyrosine phosphorylation, rapid formation of superoxide (O(2)(-)), and extracellular signal-regulated kinase (ERK)1/ERK2 mitogen-activated protein (MAP) kinase activation. Intracellularly released O(2)(-) is rapidly dismuted by superoxide dismutase (SOD) to H(2)O(2), another possible cellular growth mediator. In the present study, we assessed whether H(2)O(2) participates in 5-HT-induced mitogenic signaling. Inactivation of cellular Cu/Zn SOD by copper-chelating agents inhibited 5-HT-induced DNA synthesis of bovine pulmonary artery smooth muscle cells (BPASMCs). Infection of BPASMCs with an adenovirus containing catalase inhibited both ERK1/ERK2 MAP kinase activation and DNA synthesis induced by 5-HT. Although we could not find evidence of p38 MAP kinase activation by 5-HT, SB-203580 and SB-202190, reported inhibitors of p38 MAP kinase, inhibited the 5-HT-induced growth of BPASMCs. However, these inhibitors also inhibited 5-HT-induced O(2)(-) release. Thus quenching of O(2)(-) may be their mechanism for inhibition of cellular growth unrelated to p38 MAP kinase inhibition. These data indicate that generation of O(2)(-) in BPASMCs in response to 5-HT is followed by an increase in intracellular H(2)O(2) that mediates 5-HT-induced mitogenesis through activation of ERK1/ERK2 but not of p38 MAP kinase.  相似文献   

8.
Proline and betaine accumulate in plant cells under environmental stresses including salt stress. Here, we investigated effects of proline and betaine on the growth and activities of antioxidant enzymes in tobacco Bright Yellow-2 (BY-2) culture cells in suspension under salt stress. Both proline and betaine mitigated the inhibition of growth of BY-2 cells under salt stress and the mitigating effect of proline was more than that of betaine. Salt stress significantly decreased the activities of superoxide dismutase (SOD), catalase and peroxidase in BY-2 cells. Exogenous application of proline or betaine alleviated the reduction in catalase and peroxidase activities but not SOD activity under salt stress. In addition, proline was found to be effective in alleviating the inhibition of salt stress-induced catalase and peroxidase activities in BY-2 cells. Neither proline nor betaine directly scavenged superoxide (O(2)(-)) or hydrogen peroxide (H(2)O(2)). It is concluded that exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine because of its superior ability to increase the activities of antioxidant enzymes.  相似文献   

9.
Neurological injury and Parkinson disease (PD) are often associated with the increase of nitric oxide (NO) and free radicals from resident glial cells in the brain. In vitro, exposure to L-3-4-dihydroxyphenylalanine (L-DOPA), one of the main therapeutic agents for the treatment of PD, can lead to neurotoxicity. In this study, lipopolysaccharide (LPS) and interferon-gamma (IFN-g) were used to stimulate C6 glioma cells in the presence of varying concentrations of L-DOPA (1 microM-1 mM). The results indicated a slight augmentation of NO(2)(-) production at low concentrations of L-DOPA (<100 microM) and complete inhibition of NO(2)(-) at higher concentrations (500 microM, 1 mM), (p < 0.001). Western blot analysis corroborated that L-DOPA effects on iNOS was at the level of its protein expression. Total reactive oxygen species (ROS) were detected using 2', 7'-dichlorofluorescein diacetate fluorescence dye (2', 7'-DCFC) and there was an increase of intensity with the increasing concentrations of L-DOPA. Furthermore, large amounts of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were generated from the autoxidation of L-DOPA. C6 cells contain high levels of catalase, with inadequate levels of superoxide dismutase (SOD); therefore, there was an accumulation of O(2)(-), tantamount to elevation in 2'7'-DCFC intensity. Simultaneous accumulation of O(2)(-) and NO(2)(-) would propel formation of peroxynitrite (ONOO-). SOD completely attenuated the autoxidation of L-DOPA and significantly reversed the inhibitory effects on iNOS at high concentrations. The data obtained confirmed that the observed effects on iNOS were not due to the activation of the D(1) or beta1 adrenergic receptors by L-DOPA. It was concluded from this study that L-DOPA contributed to the modulation of iNOS and to the increase of O(2)(-) production in the stimulated glioma cells in vitro.  相似文献   

10.
Mitochondria are the major source of superoxide (O(2)(-)) in the aerobic organisms. O(2)(-) produced by the mitochondria is converted to hydrogen peroxide by mitochondrial superoxide dismutase (SOD2). Mice with complete SOD2 deficiency (SOD2(-/-)) exhibit dilated cardiomyopathy and fatty liver leading to neonatal mortality, whereas mice with partial SOD2 deficiency (SOD2(+/-)) show evidence of O(2)(-)-induced mitochondrial damage resembling cell senescence. Since earlier studies have provided compelling evidence for the role of oxidative stress and tubulointerstitial inflammation in the pathogenesis of hypertension, we tested the hypothesis that partial SOD2 deficiency may result in hypertension. Wild-type (SOD2(+/+)) and partial SOD2-deficient (SOD2(+/-)) mice had similar blood pressures at 6-7 mo of age, but at 2 yr SOD2(+/-) mice had higher blood pressure. Oxidative stress, renal interstitial T-cell and macrophage infiltration, tubular damage, and glomerular sclerosis were all significantly increased in 2-yr-old SOD2(+/-) mice. High-salt diet induced hypertension in 6-mo-old SOD2-deficient mice but not in wild-type mice. In conclusion, partial SOD2 deficiency results in oxidative stress and renal interstitial inflammation, changes compatible with accelerated renal senescence and salt-sensitive hypertension. These findings are consistent with the pattern described in numerous other models of salt-sensitive hypertension and resemble that commonly seen in elderly humans.  相似文献   

11.
The effect of bicarbonate anion (HCO(3)(-)) on the peroxidase activity of copper, zinc superoxide dismutase (SOD1) was investigated using three structurally different probes: 5, 5'-dimethyl-1-pyrroline N-oxide (DMPO), tyrosine, and 2, 2'-azino-bis-[3-ethylbenzothiazoline]-6-sulfonic acid (ABTS). Results indicate that HCO(3)(-) enhanced SOD/H(2)O(2)-dependent (i) hydroxylation of DMPO to DMPO-OH as measured by electron spin resonance, (ii) oxidation and nitration of tyrosine to dityrosine, nitrotyrosine, and nitrodityrosine as measured by high pressure liquid chromatography, and (iii) oxidation of ABTS to the ABTS cation radical as measured by UV-visible spectroscopy. Using oxygen-17-labeled water, it was determined that the oxygen atom present in the DMPO-OH adduct originated from H(2)O and not from H(2)O(2). This result proves that neither free hydroxyl radical nor enzyme-bound hydroxyl radical was involved in the hydroxylation of DMPO. We postulate that HCO(3)(-) enhances SOD1 peroxidase activity via formation of a putative carbonate radical anion. This new and different perspective on HCO(3)(-)-mediated oxidative reactions of SOD1 may help us understand the free radical mechanism of SOD1 and related mutants linked to amyotrophic lateral sclerosis.  相似文献   

12.
By immobilizing synthesized Mn-TPAA (TPAA=tris[2-[N-(2-pyridylmethyl) amino] ethyl] amine) on TiO(2) nanoneedle surface, a biosensor for superoxide ion (O(2)(-)) has been developed and applied for determination of O(2)(-) released from living cells. Direct electron transfer of Mn-TPAA is realized with a formal redox potential (E°') falling in the range of the E°' values of the redox couples O(2)/O(2)(-) and O(2)(-)/H(2)O(2). This suggests that Mn-TPAA on TiO(2) films is electrochemically active and capable of thermodynamically mediating both the oxidation of O(2)(-) to O(2) and the reduction of O(2)(-) to H(2)O(2). Therefore, Mn-TPAA immobilized on the TiO(2) films can be used electrochemically for determination of O(2)(-) due to its electrochemical activities and biomimetic catalytic activities like superoxide dismutase (SOD) toward O(2)(-). The present biomimetic O(2)(-) sensor shows high selectivity at the low working potential of 0V vs. Ag|AgCl, a wide linear range from 10(-7)M to 10(-4)M and a quick response time within 6s. By taking advantage of the developed method and the properties of biomimetic SOD themselves, we have realized the real-time monitoring of O(2)(-) concentration released from living cells and investigated the relationship between the concentration changes of O(2)(-) and intracelluar Ca(2+), which may gain additional insights on the reactive oxygen species (ROS) signal transduction and other physiological and pathological events.  相似文献   

13.
Excessive superoxide (O(-)(2)) formation is toxic to cells and organisms. O(-)(2) reacts with either iron-sulfur centers or cysteines (Cys) of cytoplasmic proteins. Reactions with membrane proteins, however, have not been fully characterized. In the present studies, the reaction of O(-)(2) with a protein complex that has glutamate/N-methyl-D-aspartate (NMDA) receptor characteristics and with one of the subunits of this complex was examined. Exposure of the complex purified from neuronal membranes and the recombinant glutamate-binding protein (GBP) subunit of this complex to the O(-)(2)-generating system of xanthine (X) plus xanthine oxidase (XO) caused strong inhibition of L-[3H]glutamate binding. Inhibition of glutamate binding to the complex and GBP by O(-)(2) was greater than that produced by H(2)O(2), another product of the X plus XO reaction. Mutation of two cysteine (Cys) residues in recombinant GBP (Cys(190,191)) eliminated the effect of O(-)(2) on L-[3H]glutamate binding. Both S-thiolation reaction of GBP in synaptic membranes with [35S]cystine and reaction of Cys residues in GBP with [3H]NEM were significantly decreased after exposure of membranes to O(-)(2). Inhibition of cysteylation of membrane GBP by O(-)(2) was still observed after iron chelation by desferrioxamine, albeit diminished, and was not altered by the presence of catalase. Overall, the results indicated that GBP exposure to O(-)(2) modified Cys residues in this protein. The modification was not characterized but it was probably that of disulfide formation.  相似文献   

14.
Although the relationship between hypercholesterolemia and oxidative stress has been extensively investigated, direct evidence regarding to the roles of cholesterol accumulation in the generations of reactive oxygen species (ROS) and apoptotic cell death under oxidative stress is lack. In this study, we investigated productions of superoxide anions (O(2)(-)) and nitric oxide (NO), and apoptotic cell death in wild type Chinese hamster ovary (CHO) cells and cholesterol accumulated CHO cells genetically and chemically. Oxidative stress was induced by menadione challenge. The results revealed that abundance of free cholesterol (FC) promoted menadione-induced O(2)(-) and NO productions. FC accumulation down-regulated eNOS expression but up-regulated NADPH oxidases, and inhibited the activities of superoxide dismutase (SOD) and catalase. Treatment of menadione increased the expressions of iNOS and qp91 phox, enhanced the activities of SOD and catalase in the wild-type CHO cells but inhibited the activity of glutathione peroxidase in the cholesterol accumulated CHO cells. Moreover, FC abundance promoted apoptotic cell death in these cells. Taken together, those results suggest that free cholesterol accumulation aggravates menadione-induced oxidative stress and exacerbates apoptotic cell death.  相似文献   

15.
A recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, was investigated with regard to its susceptibility to "oxidative stress" in submerged culture in bioreactor systems. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide or by high-dissolved oxygen tensions, was examined in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Batch cultures in the bioreactor were generally found to have maximum specific activities of CAT and SOD (Umg x protein(-1)) in the stationary/early-decline phase. Continuous addition of H2O2 (16 mmole L(-1) h(-1)), starting in the early exponential phase, induced CAT but did not increase SOD significantly. Gassing an early exponential-phase culture with O2 enriched (25 vol%) air resulted in increased activities of both SOD and CAT relative to control processes gassed continuously with air, while gassing the culture with 25 vol% O2 enriched air throughout the experiment, although inducing a higher base level of enzyme activities, did not increase the maximum SOD activity obtained relative to control processes gassed continuously with air. The profile of the specific activity of SOD (U mg CDW(-1)) appeared to correlate with dissolved oxygen levels in processes where no H2O2 addition occurred. These findings indicate that it is unsound to use the term "oxidative stress" to encompass a stress response produced by addition of a chemical (H2O2) or by elevated dissolved oxygen levels because the response to each might be quite different.  相似文献   

16.
Antioxidant defense systems of two lipidopteran insect cell lines   总被引:1,自引:0,他引:1  
Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines were found to contain unique assemblages of antioxidant enzymes. Specifically, the Sf-9 insect cell line contained Manganese and Copper-Zinc superoxide dismutase (MnSOD and CuZnSOD) for reducing the superoxide radical (O(2)(*-)) to hydrogen peroxide (H(2)O(2)) and ascorbate peroxidase (APOX) for reducing the resulting H(2)O(2) to H(2)O. Approximately one third of the total SOD activity was found to be MnSOD. The Tn-5B1-4 cells were also found to contain MnSOD (approximately two thirds of the total SOD activity), CuZnSOD and APOX activities. However, the Tn-5B1-4 cell line, in contrast to the Sf-9 cell line, contained catalase (CAT) activity for reducing H(2)O(2) to H(2)O. Both the Sf-9 and Tn-5B1-4 cell lines contained glutathione reductase and dehydroascorbic acid reductase activities for regenerating the reduced forms of glutathione and ascorbic acid, respectively. In addition, both cell lines contained glutathione S-transferase peroxidase activity towards hydroperoxides other than H(2)O(2). Finally, neither cell line contains the glutathione peroxidase activity that is ubiquitous in mammalian cells.  相似文献   

17.
18.
Hydrogen peroxide (H(2)O(2)) is a naturally occurring prooxidant molecule, and its effects in the macroinvertebrate infauna were previously observed. The existence of a gradient of antioxidant enzymes activity (catalase [CAT], glutathione peroxidase [GPx], superoxide dismutase [SOD], and glutathione-S-transferase [GST]) and/or oxidative damage along the body of the estuarine polychaeta Laeonereis acuta (Polychaeta, Nereididae) was analyzed after exposure to H(2)O(2). Because this species secretes conspicuous amounts of mucus, its capability in degrading H(2)O(2) was studied. The results suggest that L. acuta deal with the generation of oxidative stress with different strategies along the body. In the posterior region, higher CAT and SOD activities ensure the degradation of inductors of lipid peroxidation such as H(2)O(2) and superoxide anion (O(2)(.-)). The higher GST activity in anterior region aids to conjugate lipid peroxides products. In the middle region, the lack of high CAT, SOD, or GST activities correlates with the higher lipid hydroperoxide levels found after H(2)O(2) exposure. Ten days of exposure to H(2)O(2) also induced oxidative stress (lipid peroxidation and DNA damage) in the whole animal paralleled by a lack of CAT induction. The mucus production contributes substantially to H(2)O(2) degradation, suggesting that bacteria that grow in this secretion provide this capability.  相似文献   

19.
To clarify the effect of superoxide dismutase (SOD) on the formation of hydroxyl radical in a standard reaction mixture containing 15 microM of xanthone, 0.1 M of 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and 45 mM of phosphate buffer (pH 7.4) under UVA irradiation, electron paramagnetic resonance (EPR) measurements were performed. SOD enhanced the formation of hydroxyl radicals. The formation of hydroxyl radicals was inhibited on the addition of catalase. The rate of hydroxyl radical formation also slowed down under a reduced oxygen concentration, whereas it was stimulated by disodium ethylenediaminetetraacetate (EDTA) and diethyleneaminepentaacetic acid (DETAPAC). Above findings suggest that O(2), H(2)O(2), and iron ions participate in the reaction. SOD possibly enhances the formation of the hydroxyl radical in reaction mixtures of photosensitizers that can produce O(2)(-.).  相似文献   

20.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号