首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
J Andersen  N Delihas 《Biochemistry》1990,29(39):9249-9256
  相似文献   

2.
3.
4.
micF RNA, whose sequence is highly complementary to a 5'-portion of ompF mRNA, has been implicated in the osmoregulation and thermoregulation of the ompF porin gene in Escherichia coli. To define and characterize cis-acting regulatory regions upstream of the micF promoter, a series of deletions of the micF promoter fused to the lacZ gene were constructed. Two distinct regions, which function differently, were identified as cis-acting regulatory elements, namely, one responsible for OmpR-dependent activation and the other for OmpR-independent repression of micF expression. The former contains the OmpR-binding site, which simultaneously regulates both the genes, micF and ompC, in response to the medium osmolarity. The latter may be involved in an unknown regulatory process of micF expression.  相似文献   

5.
The repressor RNA, micF RNA, is regulated by temperature, osmolarity, and other stress conditions during growth of Escherichia coli. Northern (RNA) blot analyses showed that levels of micF RNA differ widely in various ompB mutant strains when cells are grown at 24 degrees C in LB broth. For example, relative to the parental strain MC4100, the ompR101 mutant strain (which contains no functional OmpR) had about a 10-fold reduction in micF RNA, whereas the envZ11 strain showed about a 5-fold increase. At 37 degrees C, however, micF RNA levels in the ompR101 and envZ11 strains and other ompB mutants differed by less than two-fold compared with the level in strain MC4100, thus indicating that a factor(s) independent of the ompB locus regulates micF RNA expression with temperature increase and that there is an additional control mechanism(s) which maintains the levels of micF RNA in these mutants close to that of the wild type during growth at high temperatures. In a plasmid strain containing the micF gene but without the upstream OmpR-binding site, steady-state levels of micF RNA increased with temperature increase but did not change with osmolarity increase. This showed that osmolal regulation but not temperature regulation of micF depends on these upstream sequences and suggested that while osmolal regulation of the micF gene depends on OmpR, thermal regulation does not.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
A novel variety of 4.5 S RNA from Codium fragile chloroplasts   总被引:2,自引:0,他引:2  
An unusual new chloroplast RNA has been isolated and sequenced in the siphonous green alga, Codium fragile. This RNA is 94 nucleotides in length, has an unusually high A + U content (73%), contains no modified residues, and is as abundant as a single chloroplast tRNA species. Although this RNA is 4.5 S in size, it bears little sequence homology to the widely found and highly conserved 4.5 S RNAs present in the chloroplasts of higher plants. Nevertheless, this RNA may indeed by analogous to the higher plant 4.5 S RNAs, since the Codium 4.5 S RNA has the potential to form a secondary structure which in many respects is remarkably similar to that of known chloroplast 4.5 S RNAs, and hybridization data strongly suggests that the 4.5 S RNA is part of the ribosomal RNA operon, as is the case in higher plant chloroplasts.  相似文献   

14.
The essential 4.5S RNA gene of Escherichia coli can be complemented by 4.5S RNA-like genes from three other eubacteria, including both gram-positive and gram-negative organisms. Two of the genes encode RNAs similar in size to the E. coli species; the third, from Bacillus subtilis, specifies an RNA more than twice as large. The heterologous genes are expressed efficiently in E. coli, and the product RNAs resemble those produced by cognate cells. We conclude that the heterologous RNAs can replace E. coli 4.5S RNA and that the essential function of 4.5S RNA is evolutionarily conserved. A consensus structure is presented for the functionally related 4.5S RNA homologs.  相似文献   

15.
16.
17.
4.5S RNA is a group of RNAs 90 to 94 nucleotides long (length polymorphism due to a varying number of UMP residues at the 3' end) that form hydrogen bonds with poly(A)-terminated RNAs isolated from mouse, hamster, or rat cells (W. R. Jelinek and L. Leinwand, Cell 15:205-214, 1978; F. Harada, N. Kato, and H.-O. Hoshino, Nucleic Acids Res. 7:909-917, 1979). We have cloned a gene that encodes the 4.5S RNA. It is repeated 850 (sigma = 54) times per haploid mouse genome and 690 (sigma = 59) times per haploid rat genome. Most, if not all, of the repeats in both species are arrayed in tandem. The repeat unit is 4,245 base pairs long in mouse DNA (the complete base sequence of one repeat unit is presented) and approximately 5,300 base pairs in rat DNA. This accounts for approximately 3 X 10(6) base pairs of genomic DNA in each species, or 0.1% of the genome. Cultured murine erythroleukemia cells contain 13,000 molecules per cell of the 4.5S RNA, which can be labeled to equilibrium in 90 min by [3H]uridine added to the culture medium. The 4.5S RNA, therefore, has a short half-life. The 4.5S RNA can be cross-linked in vivo by 4'-aminomethyl-4,5',8-trimethylpsoralen to murine erythroleukemia cell poly(A)-terminated cytoplasmic RNA contained in ribonucleoprotein particles.  相似文献   

18.
19.
20.
The role of chromosomally derived micF RNA as a repressor of outer membrane protein OmpF of Escherichia coli was examined for various growth conditions. Levels of micF RNA as determined by Northern analyses are found to increase in response to cell growth at high temperature, in high osmolarity or in the presence of ethanol. After a switch to higher growth temperature, the levels of ompF mRNA and of newly synthesized OmpF decrease with time in E. coli strain, MC4100 but these decreases are not observed in isogenic micF deletion strain, SM3001. In addition, while levels of ompF mRNA are substantially reduced in both strains in response to high osmolarity or ethanol at 24 degrees C, the reduced levels in the parental strain are still 4-5-fold lower compared with the micF deletion strain. These findings indicate that chromosomally derived micF RNA plays a major role in the thermal regulation of OmpF and represses OmpF synthesis in response to several environmental signals by decreasing the levels of ompF mRNA. Analyses of the effect of a multicopy micF plasmid on the levels of OmpF and ompF mRNA after an increase in temperature indicated that multicopies of micF RNA markedly inhibited OmpF synthesis but did not accentuate ompF mRNA decrease. These data suggest that multicopy micF inhibits OmpF synthesis primarily through translational inactivation of ompF mRNA and that a limiting factor in addition to micF RNA is necessary to destabilize ompF mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号