首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific fragments of the 16 S ribosomal RNA of Escherichia coli have been isolated and tested for their ability to interact with proteins of the 30 S ribosomal subunit. The 12 S RNA, a 900-nucleotide fragment derived from the 5′-terminal portion of the 16 S RNA, was shown to form specific complexes with proteins S4, S8, S15, and S20. The stoichiometry of binding at saturation was determined in each case. Interaction between the 12 S RNA and protein fraction S16S17 was detected in the presence of S4, S8, S15 and S20; only these proteins were able to bind to this fragment, even when all 21 proteins of the 30 S subunit were added to the reaction mixture. Protein S4 also interacted specifically with the 9 S RNA, a fragment of 500 nucleotides that corresponds to the 5′-terminal third of the 16 S RNA, and protein S15 bound independently to the 4 S RNA, a fragment containing 140 nucleotides situated toward the middle of the RNA molecule. None of the proteins interacted with the 600-nucleotide 8 S fragment that arose from the 3′-end of the 16 S RNA.When the 16 S RNA was incubated with an unfractionated mixture of 30 S subunit proteins at 0 °C, 10 to 12 of the proteins interacted with the ribosomal RNA to form the reconstitution intermediate (RI) particle. Limited hydrolysis of this particle with T1 ribonuclease yielded 14 S and 8 S subparticles whose RNA components were indistinguishable from the 12 S and 8 S RNAs isolated from digests of free 16 S RNA. The 14 S subparticle contained proteins S6 and S18 in addition to the RNA-binding proteins S4, S8, S15, S20 and S16S17. The 8 S subparticle contained proteins S7, S9, S13 and S19. These findings serve to localize the sites at which proteins incapable of independent interaction with 16 S RNA are fixed during the early stages of 30 S subunit assembly.  相似文献   

2.
Proteins from the 30 S ribosomal subunit of Escherichia coli were fractionated by column chromatography and individually incubated with 16 S ribosomal RNA. Stable and specific complexes were formed between proteins S4, S7, S8, S15 and S20, and the 16 S RNA. Protein S13 and one or both proteins of the S16S17 mixture bound more weakly to the RNA, although these interactions too were apparently specific. The binding of S16S17 was found to be markedly stimulated by proteins S4, S8, S15 and S20. Limited digestion of the RNA-protein complexes with T1 or pancreatic ribonucleases yielded a variety of partially overlapping RNA fragments, which retained one or more of the proteins. Since similar fragments were recovered when 16 S RNA alone was digested under the same conditions, their stability could not be accounted for by the presence of bound protein. The integrity of the fragments was, however, strongly influenced by the magnesium ion concentration at which ribonuclease digestion was carried out. Each of the RNA fragments was characterized by fingerprinting and positioned within the sequence of the 1600-nucleotide 16 S RNA molecule. The location of ribosomal protein binding sites was delimited by the pattern of fragments to which a given protein bound. The binding sites for proteins S4, S8, S15, S20 and, possibly, S13 and S16S17 as well, lie within the 5′-terminal half of the 16 S RNA molecule. In particular, the S4 binding site was localized to the first 500 nucleotides of this sequence while that for S15 lies within a 140-nucleotide sequence starting about 600 nucleotides from the 5′-terminus. The binding site for the protein S7 lies between 900 and 1500 nucleotides from the 5′-terminus of the ribosomal RNA.  相似文献   

3.
A fragment with a molecular weight of 170,000 and a sedimentation coefficient of 13 S which is capable of specifically binding ribosomal protein S4 has been obtained by digestion of Escherichia coli 16 S RNA with ribonuclease A. The 13 S fragment of 16 S RNA and its complex with protein S4 have been studied by different physical methods; in the first place, by neutron scattering. It has been shown that this fragment is very compact in solution. The radii of gyration of this fragment (50 ± 3 Å) and of protein S4 within the complex (17 ± 3 Å) coincide, within the limits of experimental error, with the radii of gyration for the free RNA fragment (47 ± 2 Å) and the free ribosomal protein S4 in solution (18 ± 2 Å). Hence the conclusion is drawn that the compactness of the RNA fragment and the ribosomal protein does not change on complex formation. The compact 13 S fragment of 16 S RNA is shown to be contrast-matched in solvent containing 70% 2H2O which corresponds to a value for the partial specific volume of RNA of 0.537 cm3/g.  相似文献   

4.
Following dialysis against distilled water, the 16 S ribosomal RNA of Escherichia coli is unable to interact with 30 S subunit protein S4 at 0 °C. The dialysed RNA recovered this capacity, however, when heated at 40 °C in the presence of 0.02m-MgCl2 prior to addition of the protein. Furthermore, its sensitivity to ribo-nuclease markedly declined and its sedimentation rate increased as a consequence of this treatment. Although no concomitant changes in secondary structure were detected by absorbance and fluorescence techniques, the rearrangement of a small number of base-pairs was not excluded. Kinetic measurements revealed that binding site reactivation satisfies the first-order rate law and that the process is highly temperature-dependent, exhibiting an Arrhenius activation energy of 40,800 cal/mol. Together, these data suggest that dialysed RNA undergoes a unimolecular conformational transition upon pre-incubation in Mg2+-containing buffers and that this transition leads to renaturation of the binding site for protein S4.Similar results were obtained for several other proteins of the 30 S subunit. In particular, S7, S16/S17 and S20 all failed to interact efficiently with dialysed 16 S RNA at 0 °C. These proteins bound normally to the RNA, however, after it had been incubated at 40 °C in the presence of Mg2+ ions. By contrast, prior dialysis of the 16 S RNA did not affect its ability to associate with S8 and S15 at 0 °C. These two proteins interacted equally well with dialysed and pre-incubated 16 S RNA, indicating that their binding sites are not susceptible to the reversible alterations in conformation which influence the attachment of the other RNA-binding proteins to the nucleic acid molecule. The effects of dialysis and pre-incubation on the interaction of 16 S RNA with an unfractionated mixture of 30 S subunit proteins were also investigated. The dialysed RNA bound only S6, S8, S15 and S18 at 0 °C whereas, after heating at. high Mg2+ concentrations, the RNA associated with S4, S7, S9, S13, S16/S17, S19 and S20 as well. These results leave little doubt that the protein-binding capacities of the 16 S RNA are intimately related to its three-dimensional configuration, although individual binding sites appear to differ significantly in their stability to small changes in structure.  相似文献   

5.
A ribonuclease extracted from the venom of the cobra Naja oxiana, which shows an unusual specificity for double-stranded RNA regions, was used to obtain new insight on the topography of Escherichia coli ribosomal 16 S RNA in the 30 S subunit and in the 70 S couple. 32P-labeled 30 S subunits or reconstituted 70 S tight couples containing 32P-labeled 16 S RNA have been digested under progressively stronger conditions. The cleavage sites have been precisely localized and the chronology of the hydrolysis process studied.The enzyme cleaves the 16 S RNA within 30 S subunits at 21 different sites, which are not uniformly distributed along the molecule. These results provide valuable information on the 16 S RNA topography and evidence for secondary structure features.The binding of the 50 S subunit markedly reduces the rate of the 16 S RNA hydrolysis and provides protection for several cleavage sites. Four of them are clustered in the 3′-terminal 200 nucleotides of the molecule, one in the middle (at position 772) and one in the 5′ domain (at position 336). Our results provide further evidence that the 3′-terminal and central regions of the RNA chain are close to each other in the ribosome structure and lie at the interface of the two subunits. They also suggest that the 5′ domain is probably not involved exclusively in structure and assembly.  相似文献   

6.
Ribonucleoprotein fragments of the 30 S ribosome of E. coli have been prepared by limited ribonuclease digestion and mild heating of the ribosome in a constant ionic environment. One such fragment has been described previously. A second electrophoretically homogeneous fragment has now been isolated and its RNA and protein moieties have been characterized. It contains the 5' half of the 16 S RNA, encompassing domains I and II except for the extreme 5' terminus and several small gaps. Seven proteins are present: S4, S5, S6, S8, S12, S15 and S20. The RNA binding sites of five of these proteins are known, and all are RNA sequences that are present in the fragment. Published neutron scattering and immuno-electron microscopic data indicate that six of the proteins are clustered together in a cross sectional slice through the center of the subunit. After deproteinization, the RNA moiety gives two bands in gel electrophoresis, one containing domains I and II and the other, essentially only domain II. The former, although larger, migrates faster in gel electrophoresis, indicating that RNA domains I and II interact with each other in such a way as to become more compact than domain II by itself.  相似文献   

7.
We have found that E. coli ribosomal protein S13 recognizes multiple sites on 16S RNA. However, when protein S19 is included with a mixture of proteins S4, S7, S8, S16/S17 and S20, the S13 binds to the complex with measurably greater strength and with a stoichiometry of 1.5 copies per particle. This suggests that the protein may have two functional domains. We have tested this idea by cleaving the protein into two polypeptides. It was found that one of the fragments, composed of amino acid residues 84-117, retained the capacity to bind 16S RNA at multiple sites. Protein S19 had no affect on the strength or stoichiometry of the binding of this fragment. These data suggest that S13 has a C-terminal domain primarily responsible for RNA recognition and possibly that the N-terminal region is important for association with protein S19.  相似文献   

8.
The structural relationships of S-II, S-II', and S-I(b) stimulatory proteins of RNA polymerase II purified from Ehrlich ascites tumor cells were investigated. From analysis of the amino acid compositions and tryptic peptide maps of these proteins labeled with radioiodinated Bolton-Hunter reagent, it was concluded that S-I(b) is a part of S-II located at either the amino- or carboxyl-terminal and that only this region mainly contains radioiodinatable amino acid residues when labeled using 125I. On chymotryptic digestion, S-II was cleaved to 21- and 18-kDa fragments in the presence of DNA. The 21-kDa fragment was found to be sufficient for stimulation of RNA polymerase II. It was suggested that S-II' is formed by phosphorylation of S-II in the domain containing the 18-kDa fragment.  相似文献   

9.
Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA   总被引:9,自引:0,他引:9  
We have used rapid chemical probing methods to examine the effect of assembly of ribosomal proteins S16, S17 and S20 on the reactivity of individual residues of 16 S rRNA. Protein S17 strongly protects a compact region of the RNA between positions 245 and 281, a site previously assigned to binding of S20. Protein S20 also protects many of these same positions, albeit more weakly than S17. Strong S20-dependent protections are seen elsewhere in the 5' domain, most notably at positions 108, and in the 160-200 and 330 loop regions. Enenpectedly, S20 also causes protection of several bases in the 1430-1450 region, in the 3' minor domain. In the presence of the primary binding proteins S4, S8 and S20, we observe a variety of effects that result from assembly of the secondary binding protein S16. Most strongly protected are nucleotides around positions 50, 120, 300 to 330 and 360 in the 5' domain, and positions 606 to 630 in the central domain. In addition, numerous nucleotides in the 5' and central domains exhibit enhanced reactivity in response to S16. Interestingly, the strength of the S20-dependent effects in the 1430-1450 region is attenuated in the presence of S4 + S8 + S20, and restored in the presence of S4 + S8 + S20 + S16. Finally, the previously observed rearrangement of the 300 region stem-loop that occurs during assembly is shown to be an S16-dependent event. We discuss these findings with respect to assignment of RNA binding sites for these proteins, and in regard to the co-operativity of ribosome assembly.  相似文献   

10.
Selected groups of isolated 14C-labelled proteins from E. coli 30S ribosomal subunits were reconstituted with 32P-labelled 16S RNA, and the reconstituted complexes were partially digested with ribonuclease A. RNA fragments protected by the proteins were separated by gel electrophoresis and subjected to sequence analysis. Complexes containing proteins S7 and S19 protected an RNA region comprising helices 29 to 32, part of helix 41, and helices 42 and 43 of the 16S RNA secondary structure. Addition of protein S9 had no effect. When compared with previous data for proteins S7, S9, S14 and S19, these results suggest that S14 interacts with helix 33, and that S9 and S14 together interact with the loop-end of helix 41. Complexes containing proteins S8, S15 and S17 protected helices 7 to 10 as well as the "S8-S15 binding site" (helices 20, 22 and parts of helices 21 and 23). When protein S15 was omitted, S8 and S18 showed protection of part of helix 44 in addition to the latter regions. The results are discussed in terms of our model for the detailed arrangement of proteins and RNA in the 30S subunit.  相似文献   

11.
The structure of the RNA binding site of ribosomal proteins S8 and S15.   总被引:12,自引:0,他引:12  
Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the binding site complex, in which the two smaller fragments are extensively base-paired, respectively, to the two halves of the large fragment, to form two disconnected duplexes. Each of the two duplexes is interrupted by a small internal loop. This model is supported by (i) minimum energy considerations, (ii) sites of cleavage by ribonuclease A, and (iii) modification by the single strand-specific reagent kethoxal. The effect of protein binding on the topography of the complex is reflected in the kethoxal reactivity of the RNA moiety. In the absence of the proteins, 5 guanines are modified; 4 of these, at positions 663, 732, 733, and 741, are strongly protected from kethoxal when protein S15 is bound.  相似文献   

12.
J M Kean  D E Draper 《Biochemistry》1985,24(19):5052-5061
A technique for isolating defined fragments of a large RNA has been developed and applied to a ribosomal RNA. A section of the Escherichia coli rrnB cistron corresponding to the S8/S15 protein binding domain of 16S ribosomal RNA was cloned into a single-stranded DNA phage; after hybridization of the phage DNA with 16S RNA and digestion with T1 ribonuclease, the protected RNA was separated from the DNA under denaturing conditions to yield a 345-base RNA fragment with unique ends (bases 525-869 in the 16S sequence). The secondary structure of this fragment was determined by mapping the cleavage sites of enzymes specific for single-stranded or double-helical RNA. The fragment structure is almost identical with that proposed for the corresponding region of intact 16S RNA on the basis of phylogenetic comparisons [Woese, C. R., Gutell, R., Gupta, R., & Noller, H. (1983) Microbiol. Rev. 47, 621-669]. We conclude that this section of RNA constitutes an independently folding domain that may be studied in isolation from the rest of the 16S RNA. The structure mapping experiments have indicated several interesting features in the RNA structure. (i) The largest bulge loop in the molecule (20 bases) contains specific tertiary structure. (ii) A region of long-range secondary structure, pairing bases about 200 residues apart in the sequence, can hydrogen bond in two different mutually exclusive schemes. Both appear to exist simultaneously in the RNA fragment under our conditions. (iii) The long-range secondary structure and one adjacent helix melt between 37 and 60 degrees C in the absence of Mg2+, while the rest of the structure is quite stable.  相似文献   

13.
Four fragments (named K, L, M, and N) of Escherichia coli formylmethionine transfer RNA have been prepared by a partial digestion with ribonuclease T1 followed by a chromatographic separation with a DEAE–Sphadex (A-25) column and then a DEAE–cellulose column. The fragment K is the anticodon fragment with 19 nucleotides (previously reported). L is a fragment with 57 nucleotides involving the 3′-terminal (CCA). M is a fragment with 51 nucleotides which is equal to L except that M lacks 6 nucleotides at the 3′-terminal. N is a fragment with 20 nucleotides which involved the 5′-terminal and corresponds to the complementary half to L. The infrared absorption spectrum has been observed of each of these fragments and two equimolar mixtures L + N and M + N in D2O solutions at several temperatures. The results indicate that at 37°C, K has about 4 hydrogen-bonded base-pairs, L about 11, and M about 13. On the other hand, fragment N is found to have only three weak G-C pairs. For both L + N and M + N, 15–17 strong base pairs are found. The observations give direct support to the clover-leaf structure and at the same time provide information on the stability of each of the four arms in the structure.  相似文献   

14.
In previous reports we have described the isolation of fragments of 30S ribosomal protein S4 using a number of different enzymatic and chemical cleavage techniques. These experiments were designed to determine the region of the protein responsible for 16S RNA recognition. We report here the isolation of two fragments produced by the hydroxylamine cleavage of the asparaginyl-glycyl peptide bond between positions 124 and 125. The purified fragments were chemically identified and tested for RNA binding capacity. The fragment consisting of residues 1-124 retains RNA binding activity and the fragment 125-203 is totally without RNA binding function. These results and previous results strongly suggest that the domain of protein S4 responsible for 16S RNA specific association is within the region consisting of residues 46-124.  相似文献   

15.
We have employed new methodology to obtain 23S RNA fragments which includes a) the digestion of the RNA within 50S subunits and b) the limited hydrolysis of the 13S and 18S fragments. By comparing all 23S RNA fragments, obtained heretofore, we have characterised and aligned 24 sections of this RNA spanning nearly the entire molecule. These results allow the localisation of any new 23S RNA fragment by comparison of the fingerprint of its T1 ribonuclease digest to the characteristic ones of the different sections. In this way we obtained a more definite localisation of the binding sites of the 50S proteins L1, L5, L9, L18, L20, L23 and L25. We also specified a ribonuclease sensitive region of 23S RNA in native 50S subunits, extending from the 1100th nucleotide from the 5' end to the 1000th nucleotide from the 3' end; this region contains a cluster of 5 modified nucleotides and may be at the subunit interface.  相似文献   

16.
17.
14C-labelled proteins from E. coli 30S ribosomal subunits were isolated by HPLC, and selected groups of these proteins were reconstituted with 32P-labelled 16S RNA. The isolated reconstituted particles were partially digested with ribonuclease A, and the RNA fragments protected by the proteins were separated by gel electrophoresis and subjected to sequence analysis. Protein S7 alone gave no protected fragments, but S7 together with S14 and S19 protected an RNA region comprising the sequences 936-965, 972-1030, 1208-1262 and 1285-1379 of the 16S RNA. Addition of increasing amounts of protein S9 to the S7/S14/S19 particle resulted in a parallel increase in the protection of the hairpin loop between bases 1262 and 1285. The results are discussed in terms of the three-dimensional folding of 16S RNA in the 30S subunit.  相似文献   

18.
After mild trypsin treatment of a complex of ribosomal protein S4 and 16S RNA of Escherichia coli, a large homogeneous fragment of the S4 protein was protected against digestion by its RNA binding site. This fragment was isolated and characterised for molecular weight. It was able to rebind specifically to 16S RNA. Preliminary results indicate that protected protein fragments can also be obtained from other proteins that complex specifically with 23S and 5S RNA.  相似文献   

19.
Ribosomal proteins stabilize the folded structure of the ribosomal RNA and enable the recruitment of further proteins to the complex. Quantitative hydroxyl radical footprinting was used to measure the extent to which three different primary assembly proteins, S4, S17, and S20, stabilize the three-dimensional structure of the Escherichia coli 16S 5′ domain. The stability of the complexes was perturbed by varying the concentration of MgCl2. Each protein influences the stability of the ribosomal RNA tertiary interactions beyond its immediate binding site. S4 and S17 stabilize the entire 5′ domain, while S20 has a more local effect. Multistage folding of individual helices within the 5′ domain shows that each protein stabilizes a different ensemble of structural intermediates that include nonnative interactions at low Mg2+ concentration. We propose that the combined interactions of S4, S17, and S20 with different helical junctions bias the free-energy landscape toward a few RNA conformations that are competent to add the secondary assembly protein S16 in the next step of assembly.  相似文献   

20.
The RNA binding capacity of 50S proteins from E. coli ribosomes has been tested under improved conditions; purified proteins active in reconstitution assays were used, and the binding was studied under the conditions of the total reconstitution procedure for the 50S subunit. The results are: 1) Interaction of 23S RNA was found with 17 proteins, namely L1, L2, L3, L4, L7/L12, L9, L10, L11, L15, L16, L17, L18, L20, L22, L23, L24 and L29. 2) The proteins L1, L2, L3, L4, L9, L23 and L24 bound to 23S RNA at a level of about one copy per RNA molecule, whereas L20 could bind more than one copy (no saturation was observed at 1.8 copies per 23S RNA), and the other proteins bound 0.2--0.6 copies per RNA. 3) L1, L3, L7/L12 showed a slight binding to 16S RNA, L26 (identical with S20) strong binding to 16S RNA. 4) The binding of L2, L7/L12, L10, L11, L15, L16 and L18 was preparation sensitive, i.e. the binding ability changed notably from preparation to preparation. 5) All proteins bound equally well to 23S RNA in presence of 4 and 20 mM Mg2+, respectively, except L2, L3, L4, L7/L12, L9, L10, L15, L16 and L18, which bound less strongly at 20 mM than at 4 mM Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号