首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed knowledge of the habitat requirements of steppe birds living in farmland habitats is necessary to identify agricultural practices compatible with their conservation. The globally threatened Great Bustard Otis tarda is a partial migrant in central Iberia, but factors affecting its winter habitat use have not been identified. We assessed habitat differences between breeding and wintering areas and winter habitat selection of radiotagged migrant female Great Bustards in central Spain. Of 68 tagged females, 35% moved to wintering areas located 64.3 ± 24.0 km south of their breeding areas, and 80% wintered in a single area of c. 236 km2. A census of the population in this area identified it as one of the most important wintering areas of this species in the world, holding c. 1500 individuals. There were significant differences between breeding and wintering habitats of individually marked migrant females. Compared with breeding areas, wintering areas of migrant females were located further from roads and urban nuclei, had lower human population densities and area of urban developments, and a higher diversity of land‐use types, with less cover of cereals and more vineyards and olive groves. Within this area, radiotracked migrant females preferred sites with more vineyards and a lower land‐use diversity. Our results highlight the importance of traditional Mediterranean dry farmland mosaics, and suggest that different conservation strategies are needed for migrant and resident populations in winter to secure the conservation of suitable wintering habitat for Great Bustards in the Iberian Peninsula.  相似文献   

2.
F. JIGUET  A. DOXA  & A. ROBERT 《Ibis》2008,150(3):606-618
We tested whether spatial and annual patterns of occurrence of out-of-range Great White Pelecanus onocrotalus , Dalmatian Pelecanus crispus and Pink-backed Pelicans Pelecanus rufescens recorded in Europe between 1980 and 2004 supported a natural vagrancy theory. Candidate variables tested were those likely to influence dispersal and escape probability (distance to the usual breeding/wintering range, national captive stock), and wild breeding population sizes and their movements (size of breeding colonies, climate conditions on wintering grounds or during dispersal). Spatial vagrancy patterns supported the hypothesis of wild birds dispersing from their normal range, with decreasing national totals with increasing distance to the usual range for the three species. Annual out-of-range numbers of Great White Pelican were predicted by breeding colony size and breeding success in Greece, with a further effect of Sahel rainfall during the previous year. Annual numbers of Dalmatian Pelican were related to the North Atlantic Oscillation index and to breeding success in Greece. Finally, annual numbers of Pink-backed Pelican were predicted by summer Sahel rainfall, which is known to drive dispersal of the species northwards into the sub-Sahelian steppes during wet summers there. Hence, annual vagrancy patterns in Europe were well predicted for all three species by population size indices, reproductive success and/or climatic components, which presumably influence survival and/or dispersal. We therefore consider that vagrancy patterns were driven by wild birds, whereas escapes – even if potentially numerous – do not create sufficient 'noise' to hide these patterns.  相似文献   

3.
Waterbird species have different requirements with respect to their non‐breeding areas, aiming to survive and gain condition during the non‐breeding period. Selection of non‐breeding areas could change over time and space driven by climate change and species habitat requirements. To help explain the mechanism shaping non‐breeding area selection, we provide site‐specific analyses of distributional changes in wintering waterbirds in central Europe, located at the centre of their flyways. We use wintering waterbirds as a highly dynamic model group monitored over a long‐time scale of 50 years (1966–2015). We identified species habitat requirements and changes in habitat use at the level of 733 individual non‐breeding (specifically wintering) sites for 12 waterbird species using citizen‐science monitoring data. We calculated site‐specific mean numbers and estimated site‐specific trends in numbers. The site‐specific approach revealed a general effect of mean winter temperature of site (seven of 12 species), wetland type (all species) and land cover (all species) on site‐specific numbers. We found increasing site‐specific trends in numbers in the northern and/or eastern part of the study area (Mute Swan Cygnus olor, Eurasian Teal Anas crecca, Common Pochard Aythya ferina, Great Cormorant Phalacrocorax carbo and Eurasian Coot Fulica atra). Common Merganser Mergus merganser, Great Cormorant, Grey Heron Ardea cinerea, Common Pochard, Eurasian Coot and Common Moorhen Galinulla chloropus increased their site‐specific numbers on standing industrial waters with traditionally low fish stock. The site‐specific dynamics of bird numbers helped us to identify general preference for sites reducing winter harshness (warmer areas, running waters and more wetlands in the site vicinity), as well as indicating climate‐driven changes in spatial use of wintering sites (northern/north‐eastern range changes and changes in preference for industrial waters). This fine‐scale (site‐specific) approach can reveal large‐scale range and distribution shifts driven by climate and environmental changes regardless of the availability of large‐scale datasets.  相似文献   

4.
This paper examines seasonal changes in the latitudinal distribution of birds (excluding seabirds) that breed in the western Palaearctic. Some resident species occupy ranges that span less than 5° of latitude year-round, while some migrant species range over more than 120° of latitude during the course of a year. Among migrant species of land and freshwater habitats, the latitudinal spans of breeding and wintering ranges are correlated. In general, species that breed over a narrow span of latitude also winter over a narrow span of latitude, and vice versa. Among both groups, for any given span of breeding range, species that winter partly in Eurasia and partly in Africa winter over a wider latitudinal span than those that winter entirely within Eurasia or entirely within Africa. Among coastal birds, there is no correlation between the latitudinal spans of breeding and winter areas; most shorebird species breed over a narrow span of (northern) latitude and winter over a wide span distributed linearly along coastlines. Several migration patterns can be distinguished, from complete overlap of breeding and wintering ranges in year-round residents, through partial separation of summer and winter ranges, to complete separation of summer and winter ranges in different geographical regions. In some such species, the gap between breeding and wintering ranges spans up to 55° of latitude (6000 km).  相似文献   

5.
The Great White Pelican Pelecanus anocrotalus is the largest migrating bird in Israel and is an endangered species. The Palearctic populations of the Great White Pelican breed in eastern Europe and Asia and most of them pass through the ‘bottleneck’ of Israel to wintering grounds in Africa. Natural feeding sites for pelicans have diminished during recent decades due to human activities, and sites of extensive aquaculture have become the favourite feeding places for wintering and migrating Great White Pelicans. The fish industry has reported a significant impact on fish yield and the conflict between pelicans and fishermen has escalated so that hundreds of pelicans have died in recent years from shooting or accidental electrocution. We approached this management problem by studying the energy requirements of the Great White Pelican during migration and while wintering in Israel, under different feeding regimes (fish or chicks) and in different seasons, in captivity. The results show that a captive bird consumes 1.1 kg of fish per day. The basal metabolic rate and apparent metabolized energy of the Great White Pelican are both higher than predicted from allometric equations. Energetic demands were quite stable on both diets (fish and chicks) and during both seasons (winter and summer). The fat deposits of migrating pelicans averaged 313.5 g compared with 480 g in wintering birds (3.4% and 5.4% of body mass, respectively). Based on these fat contents and on the measured daily energy consumption, we calculated that birds that do not feed in Israel can fly only up to 1620 km from Israel southward and could not cover the distance to their likely wintering grounds in the Sudd area in southern Sudan. However, birds that replenish their fuel reserves could fly up to 2460 km and hence could reach this area. Therefore, we conclude that Great White Pelicans must feed in Israel during the autumn migration in order to complete their journey to Africa. One solution to the conflict between pelicans and fishermen could be to combine deterrents preventing pelicans from feeding in fish‐ponds with the provision of attractive alternative reservoirs, to ensure regular food supplies during autumn.  相似文献   

6.
Analyses of the stable isotope composition of feathers can provide significant insight into the spatial structure of bird migration. We collected feathers from Great Reed Warblers Acrocephalus arundinaceus, Clamorous Reed Warblers A. stentoreus and a small sample of their hybrids in a sympatric breeding population in Kazakhstan to assess natural variation in stable isotope signatures and delineate wintering sites. The Great Reed Warbler is a long‐distance migrant that overwinters in sub‐Saharan Africa, whereas the Clamorous Reed Warbler performs a short‐distance migration to the Indian sub‐continent. Carbon (δ13C), nitrogen (δ15N) and deuterium (δD) isotope signatures were obtained from winter‐grown feathers of adult birds. There were highly significant differences in δD and less significant differences in δ13C between Great and Clamorous Reed Warblers. Thus, our results show that the stable isotope technique, and in particular the deuterium (δD) signal, resolves continental variation in winter distribution between these closely related Acrocephalus species with sympatric natal origin. The isotope signatures of hybrid Great × Clamorous Reed Warblers clustered with those of the Great Reed Warblers. Hence, a parsimonious suggestion is that the hybrids undergo moult in Afrotropical wintering grounds, as do the Great Reed Warblers. The observed δD values fell within the range of expected values based on available precipitation data collected at precipitation stations across the wintering continents of each species. However, the power to predict the winter origin of birds in our study system using these data was weak as the expected values ranged widely at this broad continental scale.  相似文献   

7.
Birds exhibit a range of wintering behaviour from strictly migrant to strictly resident species. In partially migrating ones, some birds overwinter within their breeding region (resident birds) while others, although breeding in the same area, winter far away (migrant birds). Accordingly, choosing a wintering region is a key stage in the annual life cycle of birds, notably for inexperienced first‐year individuals. The present study aimed to investigate this issue, and more specifically to study the distribution pattern during winter and factors influencing the wintering behaviour of first‐year pied avocets Recurvirostra avosetta. Based on a 10‐yr ringing study carried out on five of the major French breeding colonies distributed along the Atlantic coast, we showed the coexistence of different wintering tactics. The resident tactic was predominant (approximately 86% of the 575 birds re‐sighted), while the other birds adopted migration. Among resident individuals, two different tactics occurred: 43% of birds overwintered within their natal colony, whereas the others wintered in another site located at relatively close proximity along the French Atlantic coast. Hatching date was a consistent predictor of all wintering tactics. More specifically, the probability of migrating was the highest for early‐hatched birds, and for resident ones, the probability of wintering within their natal colony rather than in another French site was the highest for both median‐ and late‐hatched individuals. In addition, a colony effect was demonstrated for resident birds. Several biological interpretations, including social system, variations in both individual body condition and habitat quality, were put forward to explain these correlates.  相似文献   

8.
Aim To determine how species richness, abundance, biomass, energy use and mean number of individuals per species scale with environmental energy availability in wintering and breeding avian assemblages, and to contrast assemblages of (i) common and rare species and (ii) breeding residents and migrants. To assess whether such patterns are compatible with the ‘more individuals hypothesis’ (MIH) that high‐energy areas are species‐rich because they support larger populations that are buffered against extinction. Location The North American continent (latitudinal range 23.4 °?48.1 °N; longitudinal range 124.2°?68.7° W). Methods Avian species richness, abundance, biomass and energy use were calculated for 295 Resident Bird Count plots. Environmental energy availability was measured using ambient temperature and the Normalized Difference Vegetation Index (NDVI), a close correlate of plant productivity. Analyses took plot area into account, and were conducted (with and without taking habitat type into account) using general linear models and spatial mixed models. Results Positive species–energy relationships were exhibited by both wintering and breeding assemblages, but were stronger in the former. The structure of winter assemblages responded more strongly to temperature than NDVI, while breeding assemblages tended to respond more strongly to NDVI. Breeding residents responded to annual measures of energy availability while breeding migrants and the winter assemblage responded more strongly to seasonal measures. In the winter assemblage, rare and common species exhibited species–energy relationships of a similar strength, but common breeding species exhibited a much stronger relationship than rare breeding species. In both breeding and wintering assemblages, abundance, biomass and energy use increased with energy availability and species richness. Energy availability was a poor predictor of the mean number of individuals per species. Main conclusions The nature of the species–energy relationship varies seasonally and with the manner in which energy availability is measured. Our data suggest that residents are less able to respond to seasonal fluxes in resource availability than long‐distance migrants. Increasing species richness and energy availability is associated with increasing numbers of individuals, biomass and energy use. While these observations are compatible with the MIH our data provide only equivocal support for this hypothesis, as the rarest species do not exhibit the strongest species–energy relationships.  相似文献   

9.
Aim Conservation programmes for endangered migratory species or populations require locating and evaluating breeding, stopover and wintering areas. We used multiple stable isotopes in two endangered European populations of wrynecks, Jynx torquilla L., to locate wintering regions and assess the degree of migratory connectivity between breeding and wintering populations. Location Switzerland and Germany. Methods We analysed stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotopes from wing feathers from two populations of wrynecks to infer their wintering origins and to assess the strength of migratory connectivity. We tested whether variation in feather isotopic values within the Swiss population was affected by bird age and collection year and then considered differences in isotopic values between the two breeding populations. We used isotopic values of summer‐ and winter‐grown feathers to estimate seasonal distributions. Finally, we calculated a species‐specific δD discrimination factor between feathers and mean annual δD values to assign winter‐grown feathers to origin. Results Bird age and collection year caused substantial isotopic variation in winter‐grown feathers, which may be because of annually variable weather conditions, movements of birds among wintering sites and/or reflect asynchronous moulting or selection pressure. The large isotopic variance in winter‐grown feathers nevertheless suggested low migratory connectivity for each breeding population, with partially overlapping wintering regions for the two populations. Main conclusions Isotopic variance in winter‐grown feathers of two breeding populations of wrynecks and their geographical assignment point to defined, albeit overlapping, wintering areas, suggesting both leapfrog migration and low migratory connectivity. On this basis, integrative demographic models can be built looking at seasonal survival patterns with links to local environmental conditions on both breeding and wintering grounds, which may elucidate causes of declines in migratory bird species.  相似文献   

10.
We used observations of individually marked female black brant geese (Branta bernicla nigricans; brant) at three wintering lagoons on the Pacific coast of Baja California-Laguna San Ignacio (LSI), Laguna Ojo de Liebre (LOL), and Bahía San Quintín (BSQ)-and the Tutakoke River breeding colony in Alaska to assess hypotheses about carryover effects on breeding and distribution of individuals among wintering areas. We estimated transition probabilities from wintering locations to breeding and nonbreeding by using multistratum robust-design capture-mark-recapture models. We also examined the effect of breeding on migration to wintering areas to assess the hypothesis that individuals in family groups occupied higher-quality wintering locations. We used 4,538 unique female brant in our analysis of the relationship between winter location and breeding probability. All competitive models of breeding probability contained additive effects of wintering location and the 1997-1998 El Ni?o-Southern Oscillation (ENSO) event on probability of breeding. Probability of breeding in non-ENSO years was [Formula: see text], [Formula: see text], and [Formula: see text] for females wintering at BSQ, LOL, and LSI, respectively. After the 1997-1998 ENSO event, breeding probability was between 2% (BSQ) and 38% (LOL) lower than in other years. Individuals that bred had the highest probability of migrating the next fall to the wintering area producing the highest probability of breeding.  相似文献   

11.
Resightings of uniquely marked birds from 2001 to 2008 were used to determine winter distributions of 4 breeding populations of a species at risk, the piping plover (Charadrius melodus). Although considerable overlap exists, a distinct pattern in winter distributions was evident. Birds originating from eastern Canada wintered farthest north compared to other populations. Most individuals from the United States Great Lakes were found in South Carolina and Georgia in winter, whereas birds from eastern Canada were found primarily in North Carolina. Although the great majority of birds marked in Prairie Canada were observed wintering in Texas, particularly southern Texas, breeding plovers from the United States Great Plains were more widely distributed on the gulf coast from Florida to Texas. Very few large-scale movements of individuals in winter were reported either within or between years. This study highlights the significance of geographic regions for eastern Canada, the United States Great Lakes, the United States Great Plains, and Prairie Canada populations, and demonstrates relatively high winter site fidelity. This information will help focus conservation efforts for specific breeding populations during the winter. © 2011 The Wildlife Society.  相似文献   

12.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

13.
ABSTRACT Factors affecting winter survival may be key determinants of status and population trends of seabirds, but connections between breeding sites and wintering areas of most populations are poorly known. Pelagic Cormorants (Phalacrocorax pelagicus; N= 6) surgically implanted with satellite transmitters migrated from a breeding colony on Middleton Island, northern Gulf of Alaska, to wintering sites in southeast Alaska and northern British Columbia. Winter locations averaged 920 km (range = 600–1190 km) from the breeding site. Migration flights in fall and spring lasted ≤5 d in four instances. After reaching wintering areas, cormorants settled in narrowly circumscribed inshore locations (~10‐km radius) and remained there throughout the nonbreeding period (September– March). Two juveniles tagged at the breeding colony as fledglings remained at their wintering sites for the duration of the tracking interval (14 and 22 mo, respectively). Most cormorants used multiple sites within their winter ranges for roosting and foraging. Band recoveries show that Pelagic Cormorants in southern British Columbia and Washington disperse locally in winter, rather than migrating like the cormorants in our study. Radio‐tagging and monitoring cormorants and other seabirds from known breeding sites are vital for understanding migratory connectivity and improving conservation strategies for local populations.  相似文献   

14.
Several species of migratory swifts breed in the Western Palearctic, but they differ in reproductive traits and nonbreeding areas explored in Africa. We examined survival and recapture probabilities of two species of swifts by capture–mark–recapture data collected in northern Italy (Pallid Swift Apus pallidus in Carmagnola, Turin, and Common Swift Apus apus in Guiglia, Modena) in the breeding season (May–July). Apparent survival rates were relatively high (>71%), comparable to other studies of European swifts, but showed marked annual variations. We used geolocators to establish the exact wintering areas of birds breeding in our study colonies. Common Swifts explored the Sahel zone during migration and spent the winter in SE Africa, while the Pallid Swifts remained in the Sahel zone for a longer time, shifting locations southeast down to Cameroun and Nigeria later in winter. These movements followed the seasonal rains from north to south (October to December). In both species, we found large yearly differences in survival probabilities related to different climatic indices. In the Pallid Swift, wintering in Western Africa, the Sahel rainfall index best explained survival, with driest seasons associated with reduced survival. In the Common Swift, wintering in SE Africa, the El Niño–Southern Oscillation (ENSO) cycle performed significantly better than Sahel rainfall or North Atlantic Oscillation (NAO). Extreme events and precipitation anomalies in Eastern Africa during La Niña events resulted in reduced survival probabilities in Common Swifts. Our study shows that the two species of swifts have similar average annual survival, but their survival varies between years and is strongly affected by different climatic drivers associated with their respective wintering areas. This finding could suggest important ecological diversification that should be taken into account when comparing survival and area use of similar species that migrate between temperate breeding areas and tropical wintering areas.  相似文献   

15.
Patterns of winter irruptions in several owl species apparently follow the ‘lack of food’ hypothesis, which predicts that individuals leave their breeding grounds in search of food when prey populations do not allow breeding and are too small to ensure survival. Recent analyses, however, suggest an alternative mechanism dubbed the ‘breeding success’ hypothesis, which predicts that winter irruptions might instead be the result of a very successful breeding season, with a large pool of young birds subsequently migrating south from the breeding grounds. Here we assessed age‐class (juvenile vs. non‐juvenile) composition of winter irruptive Snowy Owls Bubo scandiacus over a 25‐year period (winter 1991–1992 to 2015–2016) between regular (North American Prairies and Great Plains) and irregular wintering areas (northeastern North America) using live‐trapped individuals and high‐resolution images of individual owls. Our results show that the proportion of juveniles (birds less than 1 year of age) varies considerably annually but is positively correlated with irruption intensity in both regions. In irregular wintering areas, it can constitute the majority (up to more than 90%) of winter irruptive Snowy Owls over a large geographical area. These results are consistent with the idea that large winter irruptions at temperate latitudes are not the result of adults massively leaving the Arctic in search of food after a breeding failure but are more likely to be a consequence of good reproductive conditions in the Arctic that create a large pool of winter migrants.  相似文献   

16.
I. NEWTON 《Ibis》1995,137(2):241-249
During the northern winter, Palaearctic migrant species are not evenly distributed within sub-Saharan Africa. Species numbers are greatest in a belt of savannah, lying south of the Sahara, and decline southwards. For any one latitude, species numbers are also greater in the east of Africa than in the west. Only about 3% of 187 species winter exclusively south of the equator, but other species migrate from north to south during the course of the northern winter.
For 62 Palaearctic species which winter entirely in Africa, the areas of breeding and wintering ranges are strongly correlated. With some exceptions, species with the largest breeding ranges also have the largest wintering ranges. However, in 69% of species, the breeding range is larger than the wintering range, whereas in 31% of species the wintering range is larger. On average, the wintering ranges of 57 landbird species cover about two-thirds the area of their breeding ranges, and in many species only parts of the wintering range may be occupied at any one time. This implies that the per area carrying capacity of African wintering areas is greater than that of Eurasian breeding areas.
The general correlation between the sizes of breeding and wintering ranges may have its basis in ecology, with generalists able to occupy wider areas than specialists in both breeding and winter quarters. At the same time, the correlation may result partly from an effect of numbers on range size, in that species which have a wide range at one time of the year may then achieve large numbers which occupy a wide range at the other time of year.  相似文献   

17.
Based on information obtained from publications, online material and experienced birdwatchers we describe changes in the breeding avifauna of Israel between 2003 and 2016. We provide details on nine species that were found breeding in Israel during this period for the first time (Common Shelduck, Great Cormorant, Black-winged Kite, Caspian Tern, White-cheeked Tern, Common Wood Pigeon, Black Bush Robin, Basra Reed Warbler, Chiffchaff); two species that were found breeding in Israel after they were not documented breeding for more than 50 years (Great Crested Grebe, Pallid Scops Owl), one species that significantly extended its breeding range in Israel (Striated Heron), and two exotic species that have recently established populations in Israel (Monk Parakeet, Vinous-breasted Starling). This brings the number of bird species breeding in Israel in 2016 to 220. We also report here that out of six new breeding species reported in 2003, three species established breeding populations in Israel, while the other species did not continue to breed in Israel regularly.  相似文献   

18.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

19.
Understanding connections between breeding, stopover and wintering grounds for long‐distance migratory birds can provide important insight into factors influencing demography and the strength of carry‐over effects among various periods of the annual cycle. Using previously described, multi‐isotope (δ13C, δ15N, δ2H) feather isoscapes for Africa, we identified the most probable wintering areas for house martins Delichon urbica breeding at Badajoz in southwestern Spain. We identified two most‐probable wintering areas differing in isotopic signature in west Africa. We found that the probability to winter in the isotopic cluster two was related to age and sex of individuals. Specifically, experienced males (i.e. two years or older) winter in the isotopic cluster two with a greater probability than experienced females, whereas first‐year females winter in the isotopic cluster two with a greater probability than first‐year males. In addition, wintering area was correlated with breeding phenology, with individuals wintering in the isotopic cluster two initiating their clutches earlier than those wintering in the isotopic cluster one. For birds wintering in the isotopic cluster two, there was no relationship between age and clutch initiation date. In contrast, young birds wintering in the isotopic cluster one initiated their clutches earlier than experienced birds wintering in this area. There was no significant correlation between wintering area and clutch size or the number of fledglings produced. We hypothesize that the relationship among social status, population density and winter habitat quality should be the most important driver of the carry‐over effect we found for this population.  相似文献   

20.
Abstract The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号