首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

2.
The influence of the sex-reversal factor (Sxr) on X and Y chromosome pairing was examined by comparing males with novel and standard Sxr genotypes. The novel Sxr males were exceptional in carrying Sxr on their X rather than their Y chromosome, or homozygously on both their X and Y chromosomes, or on a Y chromosome of different origin to that on which the factor arose. Regardless of its chromosomal location, Sxr was found to elevate the frequency of X-Y separation. Univalent X and Y chromosomes were observed to undergo self-association in a variable proportion of spermatocytes of all Sxr-carrying males. There was a suggestion that chromosomal location of the factor could influence the frequency of univalent self-association. Our observations do not support the published hypothesis of Y self-pairing as the cause of the elevated rate of X-Y separation at pachytene in Sxr-carrying males. Rather, they suggest that heterozygosity due to the presence of Sxr in the XY pairing region may be sufficient to disrupt pairing and cause univalence, or alternatively, that Sxr is an inefficient promoter of X-Y pairing initiation.  相似文献   

3.
In the wood lemming (Myopus schisticolor) three genetic types of sex chromosome constitution in females are postulated: XX, X*X and X*Y (X*=X with a mutation inactivating the male determining effect of the Y chromosome). Males are all XY. It is shown in the present paper that the two types of X chromosomes, X and X*, exhibit differences in the G-band patterns of their short arms. In addition, it was demonstrated in unbanded chromosomes that the short arm in X* is shorter than in X. The origin of these differences is still obscure; but they allow to identify and to distinguish the individual types of sex chromosome constitution, as of XX versus X*X females and of X*Y females versus XY males, on the basis of G-banded chromosome preparations from somatic cells.  相似文献   

4.
Meiotic segregation of the sex chromosomes was analysed in sperm nuclei from a man with Klinefelter’s karyotype by three-colour FISH. The X- and Y-specific DNA probes were co-hybridized with a probe specific for chromosome 1, thus allowing diploid and hyperhaploid spermatozoa to be distinguished. A total of 2206 sperm nuclei was examined; 958 cells contained an X chromosome, 1077 a Y chromosome. The ratio of X : Y bearing sperm differed significantly from the expected 1 : 1 ratio (χ2 = 6.96; 0.001 < P < 0.01). Sex-chromosomal hyperhaploidy was detected in 2.67% of the cells (1.22% XX, 1.36% XY, 0.09% YY) and a diploid constitution in 0.23%. Although the frequency of 24,YY sperm was similar to that detected in fertile males, the frequencies of 24,XX, 24,XY and diploid cells were significantly increased. A sex-chromosomal signal was missing in 4.26% of the spermatozoa. This percentage appeared to be too high to be attributed merely to nullisomy for the sex chromosomes and was considered, at least partially, to be the result of superposition of sex-chromosomal hybridization signals by autosomal signals in a number of sperm nuclei. The results contribute additional evidence that 47,XXY cells are able to complete meiosis and produce mature sperm nuclei. Received: 6 November 1996  相似文献   

5.
Sex chromosome configurations in pachytene spermatocytes of an XYY mouse   总被引:1,自引:0,他引:1  
C Tease 《Genetical research》1990,56(2-3):129-133
Karyotypic investigation of a phenotypically normal but sterile male mouse showed the presence of an XYY sex chromosome constitution. The synaptic behaviour of the three sex chromosomes was examined in 65 pachytene cells. The sex chromosomes formed a variety of synaptic configurations: an XYY trivalent (40%); an XY bivalent and Y univalent (38.5%); an X univalent and YY bivalent (13.8%); or X, Y, Y univalence (7.7%). There was considerable variation in the extent of synapsis and some of the associations clearly involved nonhomologous pairing. These observations have been compared with previously published information on chromosome configurations at metaphase I from other XYY males.  相似文献   

6.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

7.
X inactivation is a fundamental mechanism in eutherian mammals to restore a balance of X-linked gene products between XY males and XX females. However, it has never been extensively studied in a eutherian species with a sex determination system that deviates from the ubiquitous XX/XY. In this study, we explore the X inactivation process in the African pygmy mouse Mus minutoides, that harbours a polygenic sex determination with three sex chromosomes: Y, X, and a feminizing mutant X, named X*; females can thus be XX, XX*, or X*Y, and all males are XY. Using immunofluorescence, we investigated histone modification patterns between the two X chromosome types. We found that the X and X* chromosomes are randomly inactivated in XX* females, while no histone modifications were detected in X*Y females. Furthermore, in M. minutoides, X and X* chromosomes are fused to different autosomes, and we were able to show that the X inactivation never spreads into the autosomal segments. Evaluation of X inactivation by immunofluorescence is an excellent quantitative procedure, but it is only applicable when there is a structural difference between the two chromosomes that allows them to be distinguished.  相似文献   

8.
In situ hybridization of Drosophila melanogaster somatic chromosomes has been used to demonstrate the near exact correspondence between the location of highly repetitious DNA and classically defined constitutive heterochromatin. The Y chromosome, in particular, is heavily labeled even by cRNA transcribed from female (XX) DNA templates (i.e., DNA from female Drosophila with 2 Xs and 2 sets of autosomes). This observation confirms earlier reports that the Y chromosome contains repeated DNA sequences that are shared by other chromosomes. In grain counting experiments the Y chromosome shows significantly heavier label than any other chromosome when hybridized with cRNA from XY DNA templates (i.e., DNA from male Drosophila with 1 X and 1 Y plus 2 sets of autosomes). However, the preferential labeling of the Y is abolished if the cRNA is derived from XX DNA. We interpret these results as indicating the presence of a class of Y chromosome specific repeated DNA in D. melanogaster. The relative inefficiency of the X chromosome in binding cRNA from XY and XYY DNA templates, coupled with its ability to bind XX derived cRNA, may also indicate the presence of an X chromosome specific repeated DNA.  相似文献   

9.
X and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The upregulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.  相似文献   

10.
A number of patients with paradoxical sex chromosome complements (so-called XY females, XX and XO males) have been investigated with a series of 19 Yp and 4 Yq DNA probes to establish which region of the Y is essential for male sexual differentiation. Of the 23 XX males, 18 possessed one or more Yp probe sequences with only 5 lacking such sequences. Of 9 XY females examined, only one showed evidence of a deletion in Yp occurring either as a result of X-Y interchange or interstitial deletion. This suggests that the majority of XY females are not commonly deleted for those Y sequences which are found to be transferred to the X in XX males. The DNA of two XO males both contained different portions of the Y. From a comparison of the patterns of Yp sequences in these patients, it has been possible to elaborate a model of Yp in terms of the order of probe sequences and to suggest a location for the testis determining region in distal Yp.  相似文献   

11.
Meiotic studies in mice carrying the sex reversal (Sxr) factor   总被引:1,自引:0,他引:1  
A sex reversal factor (Sxr) that causes mice having apparently normal X chromosomes to become phenotypically male is transmitted in an autosomal pattern. The origin of the Sxr factor is still unknown. It seems most likely that it has originated from an autosomal gene mutation or is the result of a translocation of part of the Y chromosome to one of the autosomes. Chromosomes from four XY and six XO mice carrying this sex reversal factor were examined in the diakinesis stage of meiosis. The following unusual observations were noted: (1) in XY males carrying the Sxr factor, the X and Y chromosomes were separated more often than in controls. (2) The Y chromosome tends to be closer to an autosome when the X and Y are separate than when the X and Y are attached. (3) A chromosome fragment was present in 4/226 cells from two XO males and a single cell from an XY, Sxr carrier. Although there is no direct evidence, these observations seem to favor the possibility that the Sxr factor involves a chromosomal rearrangement rather than a single gene mutation.  相似文献   

12.
Dioecy (separate male and female individuals) ensures outcrossing and is more prevalent in animals than in plants. Although it is common in bryophytes and gymnosperms, only 5% of angiosperms are dioecious. In dioecious higher plants, flowers borne on male and female individuals are, respectively deficient in functional gynoecium and roecium. Dioecy is inherited via three sex chromosome systems: XX/XY, XX/X0 and WZ/ZZ, such that XX or WZ is female and XY, X0 or ZZ are males. The XX/XY system generates the rarer XX/X0 and WZ/ZZ systems. An autosome pair begets XY chromosomes. A recessive loss-of-androecium mutation (ana) creates X chromosome and a dominant gynoecium-suppressing (GYS) mutation creates Y chromosome. The ana/ANA and gys/GYS loci are in the sex-determining region (SDR) of the XY pair. Accumulation of inversions, deleterious mutations and repeat elements, especially transposons, in the SDR of Y suppresses recombination between X and Y in SDR, making Y labile and increasingly degenerate and heteromorphic from X. Continued recombination between X and Y in their pseudoautosomal region located at the ends of chromosomal arms allows survival of the degenerated Y and of the species. Dioecy is presumably a component of the evolutionary cycle for the origin of new species. Inbred hermaphrodite species assume dioecy. Later they suffer degenerate-Y-led population regression. Cross-hybridization between such extinguishing species and heterologous species, followed by genome duplication of segregants from hybrids, give rise to new species.  相似文献   

13.
Martin RH  Shi Q  Field LL 《Human genetics》2001,109(2):143-145
Males with a 47,XYY karyotype generally have chromosomally normal children, despite the high theoretical risk of aneuploidy. Studies of sperm karyotypes or FISH analysis of sperm have demonstrated that the majority of sperm are chromosomally normal in 47,XYY men. There have been a number of meiotic studies of XYY males attempting to determine whether the additional Y chromosome is eliminated during spermatogenesis, with conflicting results regarding the pairing of the sex chromosomes and the presence of an additional Y. We analyzed recombination in the pseudoautosomal region of the XY bivalent to determine whether this is perturbed in a 47,XYY male. A recombination frequency similar to normal 46,XY men would indicate normal pairing within the XY bivalent, whereas a significantly altered frequency would suggest other types of pairing such as a YY bivalent or an XYY trivalent. Two DNA markers, STS/STS pseudogene and DXYS15, were typed in sperm from a heterozygous 47,XYY male. Individual sperm (23,X or Y) were isolated into PCR tubes using a FACStarPlus flow cytometer. Hemi-nested PCR analysis of the two DNA markers was performed to determine the frequency of recombination. A total of 108 sperm was typed with a 38% recombination frequency between the two DNA markers. This is very similar to the frequency of 38.3% that we have observed in 329 sperm from a normal 46,XY male. Thus our results suggest that XY pairing and recombination occur normally in this 47,XYY male. This could occur by the production of an XY bivalent and Y univalent (which is then lost in most cells) or by loss of the additional Y chromosome in some primitive germ cells or spermatogonia and a proliferative advantage of the normal XY cells.  相似文献   

14.
15.
Three types of male larvae, normal X males and two types with structurally abnormal X chromosomes (ring X and short X sc 4 sc 3, y) were treated during the third instar with 0.5 per cent caffeine in nutrient medium. Upon eclosion, these males were mated to yellow and Oregon-R wild type females. The F1 generation of each cross was scored for normal (XX and XY) and abnormal (XO and XXY) progeny. Statistical analyses of data demonstrate that caffeine increases chromosomal loss for all genotypes tested. The effect of caffeine on nondisjunction, however, is not clear. There are at least marginal increases in all cases when Oregon-R females are used. Slight increase and decreases noted for offspring of yellow females appear to be dependent upon the genotype of the inseminating male.  相似文献   

16.
Zhu B  Dong Y  Gao J  Li P  Pang Y  Liu H  Chen H 《Hereditas》2006,143(2006):130-137
Here we describe our studies on Microtus mandarinus faeceus of Jiangyan in Jiangsu province of China. By karyotype and G-banding analysis we have found variation in chromosome number and polymorphisms of the X chromosome and the second pair of autosomes of the subspecies. Chromosome number of the subspecies is 2n=47-50. The subspecies has three kinds of chromosomal sex: XX, XO and XY, among which one of the X chromosomes is subtelocentric (X(ST)) and the other is metacentric (X(M)). After comparing karyotypes of different subspecies, we found the specific cytogenetic characteristics of Microtus mandarinus, that is they have three kinds of chromosomal sex: XX, XO and XY; X chromosomes are heteromorphic; the chromosome number of female individuals are one less than male individuals; chromosome number of XX individuals are equal to that of XO ones. We hypothesize that Robertsonian translocation is the main reason of the polymorphism of the second pair of autosomes and variety of chromosome number, and it also causes the chromosome number evolution in different subspecies of Microtus mandarinus.  相似文献   

17.
Among specimens of the spectacled hare-wallaby Lagorchestes conspicillatus Gould (Marsupialia, family Macropodidae) 4 males had 15 chromosomes and 2 females 16 chromosomes. The sex chromosomes are X1X1X2X2 in the female and X1X2Y in the male, the Y being metacentric and both X chromosomes are acrocentric. In about 96% of sperm mother cells at meiosis the sex chromosomes form a chain trivalent and in more than 99% of these this orients convergently so that the X1 and X2 move to the same pole. Evidence is presented that L. conspicillatus has evolved from a form with 22 chromosomes including a small X and a minute Y. Autoradiographic studies show that the proximal fifth of the X1 chromosome replicates late. This is probably the ancestral X chromosome which has been translocated to an autosome. The fate of the original Y is obscure but an hypothesis is proposed that it forms the centromeric region of the Y. A single male had 14 chromosomes and was heterozygous for a translocation involving the centric fusion of two acrocentric autosomes. In about 30% of sperm mother cells the autosomal trivalent did not disjoin regularly but, despite this, all secondary spermatocytes observed at metaphase 2 had balanced complements of chromosomes. It is assumed that unbalanced secondary spermatocytes died before reaching metaphase.  相似文献   

18.
Sexual dimorphism in body weight, fat distribution, and metabolic disease has been attributed largely to differential effects of male and female gonadal hormones. Here, we report that the number of X chromosomes within cells also contributes to these sex differences. We employed a unique mouse model, known as the "four core genotypes," to distinguish between effects of gonadal sex (testes or ovaries) and sex chromosomes (XX or XY). With this model, we produced gonadal male and female mice carrying XX or XY sex chromosome complements. Mice were gonadectomized to remove the acute effects of gonadal hormones and to uncover effects of sex chromosome complement on obesity. Mice with XX sex chromosomes (relative to XY), regardless of their type of gonad, had up to 2-fold increased adiposity and greater food intake during daylight hours, when mice are normally inactive. Mice with two X chromosomes also had accelerated weight gain on a high fat diet and developed fatty liver and elevated lipid and insulin levels. Further genetic studies with mice carrying XO and XXY chromosome complements revealed that the differences between XX and XY mice are attributable to dosage of the X chromosome, rather than effects of the Y chromosome. A subset of genes that escape X chromosome inactivation exhibited higher expression levels in adipose tissue and liver of XX compared to XY mice, and may contribute to the sex differences in obesity. Overall, our study is the first to identify sex chromosome complement, a factor distinguishing all male and female cells, as a cause of sex differences in obesity and metabolism.  相似文献   

19.
Summary Wild-type male embryos and young larvae of the nematode Caenorhabditis elegans were more sensitive than wild-type hermaphrodites to inactivation by gamma rays; wild-type males have one X chromosome per cell (XO), whereas wild-type hermaphrodites have two (XX). Furthermore, after transformation into fertile hermaphrodites by a her-1 mutation, XO animals were more radiosensitive than XX her-1 animals; and XX animals transformed into fertile males by a tra-1 mutation did not show increased radiosensitivity. It is concluded that wild-type males are more radiosensitive than wild-type hermaphrodites because they have one X chromosome rather than two, and the predominant mode of inactivation of XO animals involves damage to the single X chromosome. No sex-specific differences in survival were observed after UV irradiation.  相似文献   

20.
In the Nile tilapia, Oreochromis niloticus, sex determination is primarily genetic, with XX females and XY males. While the X and Y chromosomes (the largest pair) cannot be distinguished in mitotic chromosome spreads, analysis of comparative hybridization of X and Y chromosome derived probes (produced, by microdissection and DOP-PCR, from XX and YY genotypes, respectively) to different genotypes (XX, XY and YY) has demonstrated that sequence differences exist between the sex chromosomes. Here we report the characterization of these probes, showing that a significant proportion of the amplified sequences represent various transposable elements. We further demonstrate that concentrations of a number of these individual elements are found on the sex chromosomes and that the distribution of two such elements differs between the X and Y chromosomes. These findings are discussed in relation to sex chromosome differentiation in O. niloticus and to the changes expected during the early stages of sex chromosome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号