首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  Preconditioning of stainless steel with aqueous cod muscle extract significantly impedes subsequent bacterial adhesion most likely due to repelling effects of fish tropomyosin. The purpose of this study was to determine if other food conditioning films decrease or enhance bacterial adhesion to stainless steel.
Methods and Results:  Attachment of Pseudomonas fluorescens AH2 to stainless steel coated with water-soluble coatings of animal origin was significantly reduced as compared with noncoated stainless steel or stainless steel coated with laboratory substrate or extracts of plant origin. Coating with animal extracts also decreases adhesion of other food-relevant bacteria. The manipulation of adhesion was not attributable to growth inhibitory effects. Chemical analysis revealed that the stainless steels were covered by homogenous layers of adsorbed proteins. The presence of tropomyocin was indicated by appearance of proteins with similar molecular weight based in sodium dodecyl sulfate–polyacrylamide gel electrophoresis, in several extracts that reduced adhesion but also extracts not containing this protein reduced bacterial adhesion, indicating that several molecular species may be involved in the phenomenon.
Conclusions:  It is a common perception that food materials facilitate bacterial adhesion to surfaces; however, this study demonstrates that aqueous coatings of food origin may actually reduce bacterial adhesion.
Significance and Impact of the Study:  Compounds from food extracts may potentially be used as nontoxic coatings to reduce bacterial attachment to inert surfaces.  相似文献   

2.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

3.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

4.
Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel.  相似文献   

5.
The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-L-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria. The kinetics of frequency and dissipation shifts were dependent on the bacteria, the life cycle stage of the bacteria, and the surface. We found that exponentially grown cells gave rise to a positive frequency shift as long as their cell surface hydrophobicity was zero. Furthermore, when the characteristics of binding between the cell and the surface for different growth phases were compared, the rigidity increased from exponentially grown cells to starved cells. There was a trend in which an increase in the viscoelastic properties of the interaction, caused by the NAC coating on stainless steel, resulted in a reduction in irreversibly adhered cells. Interestingly, for B. cereus that adhered to polystyrene, the viscoelastic properties decreased, while there was a reduction in adhered cells, regardless of the life cycle stage. Altogether, NAC coating on surfaces was often effective and could both decrease the initial adhesion and increase the detachment of adhered cells and spores. The most effective reduction was found for B. cereus spores, for which the decrease was caused by a combination of these two parameters.  相似文献   

6.
Biofouling of equipment surfaces in the food industry is due initially to physico-chemical adhesion processes, and subsequently to the proliferation of microbes within an extracellular polymer matrix. Two physico-chemical theories can be applied to predict simple cases of bacterial adhesion. However, these models are limited in their applicability owing to the complexity of bacterial surfaces and the surrounding medium. Various factors that can affect the bacterial adhesion process have been listed, all directly linked to the solid substratum, the suspension liquid or the microorganism. For stainless steel surfaces, it is important to take into account the grade of steel, the type of finish, surface roughness, the cleaning procedures used and the age of the steel. Regarding the suspension fluid within which adhesion takes place, pH, ionic composition and the presence of macromolecules are important variables. In addition, the adhering microorganisms have extremely complex surfaces and many factors must be taken into account when conducting adhesion tests, such as the presence of cell appendages, the method of culture, the contact time between the microorganism and the surface, and exopolymer synthesis. Research on biofilms growing on stainless steel has confirmed results obtained with other materials, regarding resistance to disinfectants, the role of the extracellular matrix and the process by which the biofilm forms. However, it appears that the bactericidal activity of disinfectants on biofilms differs according to the type of surface on which they are growing. The main cleaners and disinfectants used in the food industry are alkaline and acid detergents, peracetic acid, quaternary ammonium chlorides and iodophors. The cleanability and disinfectability of stainless steel surfaces have been compared with those of other materials. According to the published research findings, stainless steel is comparable in its biological cleanability to glass, and significantly better than polymers, aluminium or copper. Moreover, microorganisms in a biofilm developing on a stainless steel surface can be killed with lower concentrations of disinfectant than those on polymer surfaces.  相似文献   

7.
Aims:  We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect.
Methods and Results:  The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein adsorption profiles obtained from the various materials did not differ significantly, but elution was often incomplete making minor qualitative/quantitative differences indiscernible.
Conclusions:  The data highlights the significance of protein conditioning films on bacterial adhesion and emphasizes the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion.
Significance and Impact of the Study:  Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing bacterial colonization of inert surfaces.  相似文献   

8.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

9.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20 degrees C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37 degrees C. At 8 degrees C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

10.
Laboratory studies on adhesion of microalgae to hard substrates   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Satpathy  K.K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):109-116
Adhesion of Chlorella vulgaris(chlorophyceae), Nitzschia amphibia(bacillariophceae) and Chroococcus minutus(cyanobacteria) to hydrophobic (perspex, titanium and stainless steel 316-L), hydrophilic (glass) and toxic (copper, aluminium brass and admiralty brass) substrata were studied in the laboratory. The influence of surface wettability, surface roughness, pH of the medium, culture age, culture density, cell viability and presence of organic and bacterial films on the adhesion of Nitzschia amphibia was also studied using titanium, stainless steel and glass surfaces. All three organisms attached more on titanium and stainless steel and less on copper and its alloys. The attachment varied significantly with respect to exposure time and different materials. The attachment was higher on rough surfaces when compared to smooth surfaces. Attachment was higher on pH 7 and above. The presence of organic film increased the attachment significantly when compared to control. The number of attached cells was found to be directly proportional to the culture density. Attachment by log phase cells was significantly higher when compared to stationary phase cells. Live cells attached more when compared to heat killed and formalin killed cells. Bacterial films of Pseudomonas putida increased the algal attachment significantly. %  相似文献   

11.
Surface potential is a commonly overlooked physical characteristic that plays a dominant role in the adhesion of microorganisms to substrate surfaces. Kelvin probe force microscopy (KPFM) is a module of atomic force microscopy (AFM) that measures the contact potential difference between surfaces at the nano-scale. The combination of KPFM with AFM allows for the simultaneous generation of surface potential and topographical maps of biological samples such as bacterial cells. Here, we employ KPFM to examine the effects of surface potential on microbial adhesion to medically relevant surfaces such as stainless steel and gold. Surface potential maps revealed differences in surface potential for microbial membranes on different material substrates. A step-height graph was generated to show the difference in surface potential at a boundary area between the substrate surface and microorganisms. Changes in cellular membrane surface potential have been linked with changes in cellular metabolism and motility. Therefore, KPFM represents a powerful tool that can be utilized to examine the changes of microbial membrane surface potential upon adhesion to various substrate surfaces. In this study, we demonstrate the procedure to characterize the surface potential of individual methicillin-resistant Staphylococcus aureus USA100 cells on stainless steel and gold using KPFM.  相似文献   

12.
Effects of surface-active chemicals on microbial adhesion   总被引:1,自引:0,他引:1  
Summary A simple, continuously circulating fed-batch culture system of microorganisms was designed and used to study the adhesion of mixed microbial cultures to surfaces of 316 stainless steel, Admiralty brass, and wood. The adhesion of the microbes to the surfaces was monitored by scanning electron microscope analysis. Eighteen non-toxic, non-ionic, or anionic surface-active compounds were tested for efficacy as inhibitors of microbial adhesion to stainless steel and wood surfaces. A rating system was devised to correlate efficacy with the degree of biomass adhered to 316 stainless steel, although correlation could not be made with wood. A correlation was also found between the ability of a compound to lower surface tension and its ability to prevent microbial adhesion.  相似文献   

13.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20°C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37°C. At 8°C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

14.

Bacterial adhesion on stainless steel may cause problems such as microbially induced corrosion or represent a chronic source of microbial contamination. The investigation focussed on how the extent and patterns of four bacterial species comprising three different phyla and a broad variety of physicochemical characteristics was influenced by the surface topography of AISI 304 stainless steel. Five types of surface finish corresponding to roughness values R a between 0.03 and 0.89 w m were produced. Adhesion of all four bacteria was minimal at R a =0.16 w m, whereas smoother and rougher surfaces gave rise to more adhesion. This surface exhibited parallel scratches of 0.7 w m, in which a high proportion of bacteria of three of the strains aligned. Reduced overall adhesion was attributed to unfavorable interactions between this surface and bacteria oriented other than parallel to the scratches. Interaction energy calculations and considerations of micro-geometry confirmed this mechanism. Rougher surfaces exhibiting wider scratches allowed a higher fraction of bacteria to adhere in other orientations, whereas the orientation of cells adhered to the smoothest surface was completely random.  相似文献   

15.
The purpose of these investigations was to evaluate the influence of limited nutrient availability in the culture medium on Proteus vulgaris biofilm formation on surfaces of stainless steel. The relationship between the P. vulgaris adhesion to the abiotic surfaces, the cellular ATP levels, cell surface hydrophobicity and changes in the profiles of extracellular proteins and lipopolysaccharides was examined. In all experimental variants the starvation conditions induced the bacterial cells to adhere to the surfaces of stainless steel. Higher ATP content and lower cell surface hydrophobicity of P. vulgaris cells was observed upon nutrient-limited conditions. Under starvation conditions a reduction in the levels of extracellular low molecular weight proteins was noticed. High molecular weight proteins formed the conditioning layer on stainless steel plates, making the bacteria adhesion process more favorable. The production of low molecular weight carbohydrates promoted more advanced stages of P. vulgaris biofilm formation process on the surfaces of stainless steel upon starvation.  相似文献   

16.
The aim of this study was to assess the respective impacts of the surface energy and surface roughness of bare and coated steels on biofouling and sanitisation. Bioadhesion of Staphylococcus aureus CIP 53.154 was studied on two stainless steel surfaces with smooth or specific micro-topography. Two coatings were also studied: silicon oxide (hydrophilic) and polysiloxane (hydrophobic). On smooth surfaces, adhesion was reduced on an apolar coating and cell viability increased with the surface polarity. A specific micro-topography decreased the level of bacterial adhesion on bare surfaces by a factor ten. On this surface, only single adherent cells were observed, contrasting with cells in clusters on smoother surfaces. As a consequence, cell repartition influenced bacterial viability. Most isolated adherent cells were dead whereas cells in clusters were still alive. In addition, the quaternary ammonium chloride used in sanitisation, acted at once both as a tensio-active molecule and a biocide. It only displaced adherent cells but did not remove them.  相似文献   

17.
Abstract

The aim of this study was to assess the respective impacts of the surface energy and surface roughness of bare and coated steels on biofouling and sanitisation. Bioadhesion of Staphylococcus aureus CIP 53.154 was studied on two stainless steel surfaces with smooth or specific micro-topography. Two coatings were also studied: silicon oxide (hydrophilic) and polysiloxane (hydrophobic). On smooth surfaces, adhesion was reduced on an apolar coating and cell viability increased with the surface polarity. A specific micro-topography decreased the level of bacterial adhesion on bare surfaces by a factor ten. On this surface, only single adherent cells were observed, contrasting with cells in clusters on smoother surfaces. As a consequence, cell repartition influenced bacterial viability. Most isolated adherent cells were dead whereas cells in clusters were still alive. In addition, the quaternary ammonium chloride used in sanitisation, acted at once both as a tensio-active molecule and a biocide. It only displaced adherent cells but did not remove them.  相似文献   

18.
Stainless steel coupons were treated with skim milk and subsequently challenged with individual bacterial suspensions of Staphylococcus aureus, Pseudomonas fragi, Escherichia coli, Listeria monocytogenes, and Serratia marcescens. The numbers of attached bacteria were determined by direct epifluorescence microscopy and compared with the attachment levels on clean stainless steel with two different surface finishes. Skim milk was found to reduce adhesion of S. aureus, L. monocytogenes, and S. marcescens. P. fragi and E. coli attached in very small numbers to the clear surfaces, making the effect of any adsorbed protein layer difficult to assess. Individual milk proteins alpha-casein, beta-casein, kappa-casein, and alpha-lactalbumin were also found to reduce the adhesion of S. aureus and L. monocytogenes. The adhesion of bacteria to samples treated with milk dilutions up to 0.001% was investigated. X-ray photoelectron spectroscopy was used to determine the proportion of nitrogen in the adsorbed films. Attached bacterial numbers were inversely related to the relative atomic percentage of nitrogen on the surface. A comparison of two types of stainless steel surface, a 2B and a no. 8 mirror finish, indicated that the difference in these levels of surface roughness did not greatly affect bacterial attachment, and reduction in adhesion to a milk-treated surface was still observed. Cross-linking of adsorbed proteins partially reversed the inhibition of bacterial attachment, indicating that protein chain mobility and steric exclusion may be important in this phenomenon.  相似文献   

19.
Staphylococcus epidermidis is a frequent cause of infection associated with the use of biomedical devices. Flow cell studies of the interaction between bacteria and surfaces do not generally allow direct comparison of different materials using the same bacterial suspension. The use of a modified Robbins Device (MRD) to compare the adhesion to different surfaces of Staph. epidermidis RP62A grown in continuous culture was investigated. Adhesion to glass was compared with siliconized glass, plasma-conditioned glass, titanium, stainless steel and Teflon. Attachment to siliconized glass was also compared with glass under differing ionic strength, and divalent cation concentrations. Both the differences in numbers adhering and changes in adhesion (slope) through the MRD were compared. There was a trend towards higher numbers adhering to the discs at the in-flow end of the MRD than at the outflow end, probably reflecting depletion of adherent bacteria in the interacting stream. Adhesion of Staph. epidermidis RP62A to siliconized glass and Teflon was reduced when compared to glass with increasing flow rates. Adhesion to stainless steel was not affected by flow rate and titanium gave a different slope of adhesion through the MRD when compared with glass, suggesting an interaction with different sub-populations within the interacting stream. Differences between siliconized glass and glass at flow rates of 300 ml h-1 were abolished by the addition of calcium or EDTA and reduced by the addition of magnesium. Increasing ionic strength reduced the statistical significance of the differences between glass and siliconized glass. Pre-conditioning of glass with pooled human plasma reduced adhesion compared with untreated glass and again gave a different slope to glass. The MRD linked to a chemostat can be used to compare directly bacterial adhesion to potential biomaterials. Variable depletion of the interacting stream should be taken into account in the interpretation of results. Divalent cation concentration, substrate properties and flow rate were important determinants of the comparative adhesion of Staph. epidermidis RP62A to surfaces.  相似文献   

20.
AIMS: To investigate the bactericidal influence of copper-alloying of stainless steel on microbial colonization. METHODS AND RESULTS: Inhibition of bacterial adherence was investigated by monitoring (192 h) the development of a multi-species biofilm on Cu-alloyed (3.72 wt%) stainless steel in a natural surface water. During the first 120 h of exposure, lower numbers of viable bacteria in the water in contact with copper-containing steel relative to ordinary stainless steel were observed. Moreover, during the first 48 h of exposure, lower colony counts were found in the biofilm adhering to the Cu-alloyed steel. No lower colony or viable counts were found throughout the remainder of the experimental period. CONCLUSION: The presence of Cu in the steel matrix impedes the adhesion of micro-organisms during an initial period (48 h), while this bactericidal effect disappears after longer incubation periods. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of Cu-alloyed stainless steels for bactericidal purposes should be restricted to regularly-cleaned surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号